COMPREHENSIVE LONG-TERM ENVIRONMENTAL ACTION NAVY II (CLEAN II) Northern and Central California, Nevada, and Utah Contract No. N62474-94-D-7609 Contract Task Order No. 0270

Prepared For

DEPARTMENT OF THE NAVY
David B. DeMars, Lead Remedial Project Manager
Southwest Division Naval Facilities Engineering Command
San Diego, California

FINAL
JANUARY TO MARCH 2000
SECOND QUARTERLY GROUNDWATER
SAMPLING REPORT FOR PARCEL B
HUNTERS POINT SHIPYARD
SAN FRANCISCO, CALIFORNIA

June 23, 2000

Prepared By

TETRA TECH EM INC. 135 Main Street, Suite 1800 San Francisco, California 94105 (415) 543-4880

Thomas Shoff, Project Manager

CONTENTS

Secti	<u>on</u>			Page
ABB	REVIAT	IONS, AC	CRONYMS, AND SYMBOLS	iii
1.0	INTR	ODUCTIO	N	1
2.0	GRO	UNDWAT	ER MONITORING PROCEDURES AND METHODS	2
	2.1	GROUN	NDWATER LEVEL MEASUREMENTS	2
	2.2	GROUN	NDWATER SAMPLING PROCEDURES	3
	2.3		ATORY ANALYSES	
3.0	SECO	ND QUAI	RTER GROUNDWATER SAMPLING RESULTS	5
	3.1	GROUN	NDWATER LEVELS	5
	3.2	ANALY	TICAL RESULTS	6
		3.2.1	Point-of-Compliance Monitoring Wells	6
		3.2.2	On- and Off-Site Migration Monitoring Wells	
		3.2.3	Post-Remedial-Action Monitoring Wells	9
		3.2.4	Sentinel Wells	10
		3.2.5	VOC Monitoring Well	10
		3.2.6	Utility Line Monitoring Well	10
	3.3	DATA (QUALITY	10
	3.4		TIONS FROM THE QUALITY ASSURANCE PROJECT PLA EDIAL ACTION MONITORING PLAN	
	3.5		USIONS	
REF	ERENCE	S		15
Appe	endices			
A			F ANALYTICAL RESULTS FOR JANUARY 2000 SAMPLIN ER LEVELS	G EVENT
В	JANU	JARY 2000	0 MONITORING WELL SAMPLING SHEETS	
C	JANU	JARY 2000	0 SAMPLES CHAIN-OF-CUSTODY RECORDS	
D	JANU	JARY 2000	0 DATA VALIDATION REPORTS	

FIGURES

Figure

- 1 FACILITY LOCATION MAP
- 2 PARCEL B REMEDIAL ACTION MONITORING WELLS
- 3 PARCEL B GROUNDWATER LEVEL CONTOUR MAP
- 4 SECOND QUARTER REMEDIAL ACTION MONITORING WELLS EXCEEDING TRIGGER LEVELS PARCEL B

TABLES

Table

- 1 SUMMARY OF WELLS SAMPLED AND ANALYSES PERFORMED
- 2 SUMMARY OF TRIGGER LEVELS FOR PARCEL B GROUNDWATER SAMPLING RESULTS
- 3 COMPARISON OF TRIGGER LEVEL CRITERIA
- 4 SUMMARY OF WATER LEVEL MEASUREMENTS TAKEN JANUARY 10, 2000
- 5 SECOND QUARTER RESULTS EXCEEDING TRIGGER LEVELS, WITH ASSOCIATED HISTORICAL RESULTS
- 6 HISTORICAL RESULTS AT MONITORING WELLS IN PROXIMITY TO IR-10 TRICHLORETHENE GROUNDWATER PLUME

ABBREVIATIONS, ACRONYMS, AND SYMBOLS

CAP Corrective action plan

CLEAN Comprehensive Long-Term Environmental Action Navy

CLP Contract Laboratory Program COPC Chemical of potential concern

CTO Contract task order

DI Deionized

EPA U.S. Environmental Protection Agency

HGAL Hunters Point Shipyard groundwater ambient level

HPS Hunters Point Shipyard

IR Installation Restoration

LUFT Leaking underground fuel tank

MS/MSD Matrix spike/matrix spike duplicate

 μ g/L Microgram per liter

Navy U.S. Department of the Navy

NAWQC National Ambient Water Quality Criteria

± Plus or minus

PAH Polynuclear aromatic hydrocarbons

PCB Polychlorinated biphenyl POC Point-of-compliance

PRC PRC Environmental Management, Inc.

QAPP Quality assurance project plan

QA/QC Quality assurance and quality control

RAMP Remedial action monitoring plan

RI Remedial investigation
RPD Relative percent difference

SOP Standard operating procedure

SWDIV Southwest Division

SVOC Semivolatile organic compound

TCE Trichloroethene

TIZ Tidally influenced zone

TPH Total petroleum hydrocarbons

TtEMI Tetra Tech EM Inc.

VOC Volatile organic compound

1.0 INTRODUCTION

Tetra Tech EM Inc. (TtEMI) has prepared this quarterly groundwater sampling report for the second quarter of groundwater sampling, for the period of January through March 2000, at Parcel B, Hunters Point Shipyard (HPS) in San Francisco, California, for the U.S. Department of the Navy (Navy), Naval Facilities Engineering Command, Southwest Division (SWDIV). Under the Comprehensive Long-Term Environmental Action Navy Contract No. N62474-94-D-7609 (CLEAN II), Contract Task Order (CTO) No. 0270, four consecutive quarters of groundwater monitoring will be conducted in accordance with the Parcel B remedial action monitoring plan (RAMP) (TtEMI 1999a). The first quarter of groundwater sampling was conducted in September 1999. The second quarter of groundwater sampling was conducted in January 2000. Resampling of monitoring wells where concentrations of any chemical exceeded trigger levels occurred during the third quarter of groundwater sampling, in April 2000. Concentrations reported in this document from the third quarter sampling event are unvalidated results. Figure 1 provides a facility location map.

During the remedial investigation (RI) of Parcel B (PRC Environmental Management, Inc. [PRC] 1996a), groundwater monitoring wells installed at Parcel B for the RI were sampled for possible chemical contaminants. Of these wells, 13 were sampled as part of this second quarter monitoring event. In addition, 11 new wells were installed and sampled in accordance with the Parcel B RAMP. Four of the new wells replace previously installed wells IR07MWS-2, IR07MWS-4, IR10MW31A1, and IR18MW21A; however, they retained the same well names, as documented in the Parcel B RAMP (TtEMI 1999a). Figure 2 presents the locations of the 24 groundwater monitoring wells sampled in this event and Installation Restoration (IR) site locations at Parcel B.

This report is organized into three sections. Following this introduction, Section 2 provides an overview of the sampling procedures and methods used during the second quarterly sampling event. Section 3 discusses the results from this sampling event as well as data quality. Appendix A summarizes the results from the second quarterly sampling event and compares the concentrations with trigger levels. Appendices B and C present monitoring well sampling sheets and chain-of-custody records for the sampling event, respectively. Appendix D includes a data validation report for the sampling event. References used to prepare this report are listed at the end of the report.

The groundwater monitoring program for Parcel B has the following purposes:

- To ensure trigger level concentrations are not exceeded along the inland edge of the tidally influenced zone
- To assess the effect of remedial actions involving contaminated soil on contaminant levels in A-aquifer groundwater at IR-07
- To evaluate the bayward migration of hazardous substances in A-aquifer groundwater from IR-06 and IR-10
- To assess the on- and off-site migration of hazardous substances in A-aquifer groundwater from the area northwest of IR-07 and IR-18
- To monitor the potential degradation of trichloroethene (TCE) to byproducts, including vinyl chloride, in A-aquifer groundwater at IR-10 and IR-24

Six types of groundwater monitoring wells completed in the A-aquifer are sampled in accordance with the Parcel B RAMP, as shown on Figure 2. The well types and naming conventions used are as follows:

- Point-of-Compliance (POC) Monitoring Wells: A total of eight wells at the POC, which is located at the high-tide line of the Parcel B tidally influenced zone (TIZ)
- Sentinel Wells: A total of seven wells located near the inland edge of the approximate 5-year buffer zone indicated on Figure 2
- Post-Remedial-Action Monitoring Wells: A total of five wells located within the TIZ to monitor the effectiveness of source control at IR sites
- Volatile Organic Compound (VOC) Monitoring Well: One well located near IR-10 to monitor the potential degradation of TCE to byproducts, including vinyl chloride
- On- and Off-Site Migration Monitoring Wells: Two wells along the western Parcel B boundary to evaluate on- and off-site migration of contaminants in A-aquifer groundwater
- Utility Line Monitoring Well: One well located near IR-06 to monitor the utility line

2.0 GROUNDWATER MONITORING PROCEDURES AND METHODS

Groundwater monitoring procedures for the second quarter groundwater sampling event include water level measurements and groundwater sampling as summarized below.

2.1 GROUNDWATER LEVEL MEASUREMENTS

Groundwater level measurements were collected on Monday, January 10, 2000, in accordance with the final Parcel B RAMP (TtEMI 1999a), the basewide quality assurance project plan (QAPP) (PRC

1996b), and the TtEMI standard operating procedure (SOP) for groundwater sampling (SOP No. 10, Revision 3), which is included in the Parcel B RAMP (TtEMI 1999a). Depth to water in each well was measured with an electric water-level indicator, and the total well depth was measured using a weighted steel tape. Groundwater level measurements were collected during a single day and over a 3-hour period in order to minimize tidal influence upon measurements.

2.2 GROUNDWATER SAMPLING PROCEDURES

Groundwater samples were collected from Monday, January 10, to Friday, January 14, 2000, in accordance with the final Parcel B RAMP (TtEMI 1999a), the basewide quality assurance project plan (QAPP) (PRC 1996b), and the TtEMI SOP for Groundwater Sampling (SOP No. 10, Revision 3), which is included in the Parcel B RAMP (TtEMI 1999a).

Before sampling, the wells were purged to remove standing water from each well, ensuring that the groundwater samples collected were representative of aquifer conditions. Wells with a small purge volume or with a slow recovery were purged and sampled using disposable Teflon bailers.

The groundwater temperature, pH, turbidity, specific conductance, dissolved oxygen, and salinity were measured before purging and then at regular intervals at a rate of two or more times per well casing volume removed. Parameters were recorded on monitoring well sampling sheets, which are included in Appendix B. A total of three well casing volumes was removed unless (1) the well went dry before this volume was purged or (2) the water parameters monitored during purging did not stabilize within stability criteria (Table 2 of SOP No.10 [TtEMI 1999a]). The depth to water was measured again after purging was complete, except at monitoring wells sampled using low-flow (minimal drawdown) groundwater sampling procedures.

When a well was purged dry before three well casing volumes were removed, VOC samples were collected after a sufficient volume of groundwater to enable sample collection had entered the well (SOP No. 10, Revision 3 [TtEMI 1999a]). Remaining samples were collected as soon as the well had recovered. Samples were collected in order of decreasing sensitivity to volatilization or to oxidation-reduction reactions. The preferred order of sample collection is summarized in Table 3 of the SOP (TtEMI 1999a).

Submersible pumps were used for purging of groundwater at all RAMP monitoring wells except at those that applied low-flow groundwater sampling procedures. If submersible pumps failed, disposable

bailers were used for purging of groundwater. Disposable bailers were used for groundwater sampling at all RAMP monitoring wells except at those that applied low-flow groundwater sampling procedures. Peristaltic pumps were used to purge and sample groundwater at monitoring wells that applied low-flow groundwater sampling procedures.

Groundwater samples analyzed for soluble metals were filtered in the field by collecting water in a laboratory-cleaned, unpreserved plastic bottle and filtering this water into a laboratory-cleaned, nitric-acid-preserved, 1-liter bottle. Groundwater samples analyzed for total metals were not filtered and were collected in a laboratory-cleaned, nitric-acid-preserved 1-liter bottle.

Water-level sounders used during water sampling activities were decontaminated before each use by washing the probe and the portion of the cable directly above the probe with deionized (DI) water and wiping it clean with a disposable paper towel. Submersible pumps were decontaminated before each use by washing each pump exterior with DI water and Liquinox soap solution, and then pumping a solution of DI water and Liquinox soap through the pump. The pump was then flushed with DI water. New polyethylene tubing for the submersible and peristaltic pumps was used at each well; therefore, decontamination of the tubing was not necessary.

Purged water was placed in U.S. Department of Transportation-approved 55-gallon drums and transferred to holding tanks located at the investigation-derived-waste area. Currently, the purge water from the first and second quarters of sampling is stored in a Baker tank located by Pump Station A on HPS. If purge water meets the criteria set by the City of San Francisco, it will be discharged into Pump Station A, which discharges to the Southeast Water Pollution Control Plant (Appendix C [TtEMI 1999a]). If purge water does not meet batch wastewater discharge requirements, the water will be treated and discharged once it has been determined to be satisfactory. Water treatment could take many forms depending upon the cause for failing discharge requirements and will be determined on a case-by-case basis. Historically at HPS, purge water from groundwater sampling events has met City discharge requirements.

2.3 LABORATORY ANALYSES

The groundwater samples were analyzed by Severn Trent Laboratories, Inc., of Colchester, Vermont, and Curtis & Tompkins, Ltd., of Berkeley, California, which are certified by the State of California and the Naval Facilities Engineering Service Center. The chain-of-custody record forms signed by the laboratories for the samples collected during the second quarterly sampling event are included as

Appendix C. Groundwater samples were analyzed using the following analytical methods, which are discussed in detail in the basewide QAPP (PRC 1996b):

- CLP VOCs (U.S. Environmental Protection Agency [EPA] OLM03.1): POC wells, sentinel wells, post-remedial-action wells, VOC well, on- and off-site migration wells, and utility line monitoring well
- CLP Metals and Hexavalent Chromium (EPA ILM04.0/EPA 7196): POC wells, sentinel
 wells, post-remedial-action wells, on- and off-site migration wells, and utility line
 monitoring well
- TPH as Diesel (California leaking underground fuel tank [CA LUFT] and EPA 8015): POC wells, sentinel wells, post-remedial-action wells, on- and off-site migration wells, and utility line monitoring well
- TPH as Gasoline (CA LUFT and EPA 8015): POC wells, sentinel wells, post-remedial-action wells, on- and off-site migration wells, and utility line monitoring well
- CLP Semivolatile Organic Compounds (SVOC) (EPA OLM03.1): on- and off-site migration wells and utility line monitoring well
- CLP Pesticides and Polychlorinated Biphenyls (PCB) (EPA OLM03.1 modified): onand off-site migration wells and utility line monitoring well

In addition, groundwater samples collected from wells IR10MW33A, PA50MW01A, IR10MW31A1, and IR10MW28A were analyzed using the CLP low-level VOC method (EPA OLM02.0) in order to obtain low detection limits for the potential TCE degradation product vinyl chloride.

3.0 SECOND QUARTER GROUNDWATER SAMPLING RESULTS

The following sections discuss groundwater levels, analytical results, data quality, and deviations from the QAPP or Parcel B RAMP for samples collected from the 24 wells sampled during the second quarter sampling event.

3.1 GROUNDWATER LEVELS

Groundwater level data is collected during every quarterly sampling event. Groundwater level measurement procedures are discussed in Section 2.1 of this report. Water level measurements are summarized in Table 4, and water table potentiometric contours are provided on Figure 3.

Groundwater generally flows in a northeasterly direction toward San Francisco Bay. Data from on- and off-site migration wells suggest groundwater flows from off site to on site (north to south). There is an

apparent mound near monitoring well IR06MW45A. Groundwater tends to flow radially away from the center of this area. In IR-25, on the southern side of IR06MW45A, groundwater appears to be flowing in a southern and southeastern direction. On the eastern side, groundwater appears to flow toward the southeast. On the northern side, groundwater flows toward the bay.

Compared with the first quarter water levels, the second quarter's groundwater levels had decreased by approximately 1 to 3 inches. This decrease in groundwater storage and water levels is to be expected at the beginning of the wet season, which approximately begins in January.

3.2 ANALYTICAL RESULTS

This section summarizes analytical results for the second quarterly sampling event, which was conducted from January 10 to January 14, 2000. Analytical results for the second quarterly sampling event are presented in Appendix A of this report.

The trigger levels used for the various well types are summarized in Table 2, and the specific trigger levels by chemical for each well type are presented in Table 3.

Results for manganese, nickel, and thallium from POC monitoring well IR26MW41A exceeded trigger levels during the first-quarter sampling event; however, the second-quarter results for those metals did not exceed the trigger levels. Results for chromium from POC monitoring well IR07MWS-4 exceeded the trigger level in both the first- and second-quarter sampling events. Trigger levels were exceeded for barium, chromium, and zinc during the second quarterly sampling event in samples collected from six POC monitoring wells, four post-remedial-action monitoring wells, and one on- and off-site migration monitoring well; however, the results of third-quarter sampling (conducted between April 25 and May 2, 2000) for those metals did not exceed trigger levels. Although, third-quarter sampling results reported in this document have not been validated.

Results for each type of well that contained chemical concentrations exceeding trigger levels during the second quarterly sampling event are discussed further below and are summarized in Table 5. Figure 4 presents analytical results for groundwater monitoring wells that exceeded trigger levels.

3.2.1 Point-of-Compliance Monitoring Wells

A total of eight POC monitoring wells were sampled during the second quarterly event. These wells are located near the inland edge of the TIZ.

Samples collected from the following wells exceeded the screening criteria for metals, as summarized in Table 5:

- Well IR07MWS-2 for zinc (112 micrograms per liter $[\mu g/L]$)
- Well IR07MWS-4 for barium (716 μ g/L), chromium (16.4 μ g/L), and zinc (227 μ g/L)
- Well IR07MW19A for barium (552 μ g/L) and zinc (134 μ g/L)
- Well IR10MW31A1 for barium (705 μ g/L) and zinc (162 μ g/L)
- Well IR26MW45A for barium (744 μ g/L) and zinc (200 μ g/L)
- Well PA50MW01A for zinc (92 μg/L)

The trigger levels for barium and chromium, which are based on the HPS groundwater ambient level (HGAL), are 504 μ g/L and 15.7 μ g/L, respectively. The trigger level for zinc, which is based on the National Ambient Water Quality Criteria for the protection of saltwater aquatic life (NAWQC), is 81 μ g/L.

Barium and zinc concentrations increased by an order of magnitude since the previous quarterly sampling (September 1999) and the RI sampling, which occurred in 1991 and 1992. Chromium concentrations have decreased since the last sampling round but are still higher than concentrations detected during RI sampling. However, chromium concentrations that exceeded trigger levels are consistent with variations in ambient conditions of HPS groundwater. Table 5 presents historical sampling results for the analytes exceeding trigger levels.

Chromium was detected at 23.6 μ g/L (soluble chromium) and 24.5 μ g/L (total chromium) at monitoring well IR07MWS-4 during the first quarterly sampling event. These concentrations were estimated due to high-bias interference from high sample concentrations of calcium and magnesium. During the second quarterly sampling event, chromium was detected at 16.4 μ g/L, exceeding its trigger level of 15.7 μ g/L. Chromium concentrations were less than its trigger level during the third quarterly sampling event in April 2000. There is no NAWQC concentration for chromium, so the trigger level is based on the HGAL. The fact that chromium slightly exceeds its trigger level is likely an artifact in the methodology used to calculate ambient levels, which was the 95 percent upper confidence limit on the 95th percentile of the distribution using the nonparametric distribution formula. Statistically, 5 percent of the ambient population will exceed the calculated ambient level. Historical trends of chromium at monitoring well IR07MWS-4 are shown in Table 5.

Resampling of POC monitoring wells with concentrations that exceeded trigger levels occurred as part of the third-quarter groundwater sampling event in April 2000. Barium, chromium, and zinc concentrations at POC monitoring wells were less than their respective trigger levels during the third-quarter sampling event.

Concentrations of manganese, nickel, and thallium at monitoring well IR26MW41A exceeded their respective trigger levels during the first-quarter sampling event. However, concentrations of these metals were all less than trigger level values during the second-quarter sampling event, as summarized below.

IR26MW41A QUARTERLY SAMPLING RESULTS

Constituent	Trigger Levels (µg/L)	First-Quarter Sampling Event Results (µg/L)	Second-Quarter Sampling Event Results (µg/L)	
Manganese	8,140	13,900	1,730	
Nickel	96.5	105	36.5	
Thallium	13	59.7	5.5	

The second- and third-quarter concentrations of manganese, nickel, and thallium are also consistent with historical results collected during the RI. Consequently, the elevated concentrations of these metals exhibited during the first-quarter sampling event do not appear to be a continuing issue.

3.2.2 On- and Off-Site Migration Monitoring Wells

A total of two on- and off-site migration monitoring wells were sampled during the second quarterly event. These wells are located along the western Parcel B boundary.

Barium (637 μ g/L) and zinc (178 μ g/L) concentrations exceeded their respective trigger level values in samples collected from monitoring well IR07MW28A. The concentrations of barium and zinc at monitoring well IR07MW28A have increased by an order of magnitude since the previous quarterly sampling and the RI sampling, which occurred in 1991 and 1992 (see Table 5).

Resampling of IR07MW28A occurred as part of the third-quarter groundwater sampling event in April 2000. Barium and zinc concentrations at IR07MW28A were less than their respective trigger levels during the third-quarter sampling event.

Aroclor-1221 was reported as nondetect at a quantitation limit of 0.2 μ g/L in the sample collected from well IR07MW28A. The quantitation limit of 0.1 μ g/L for Aroclor-1016, Aroclor-1232, Aroclor-1242, Aroclor-1248, Aroclor-1254, and Aroclor-1260 met the trigger level for PCBs; however, the quantitation limit for Aroclor-1221 could only be lowered to 0.2 μ g/L due to limitations of the analytical method (EPA OLM03.1 modified). The quantitation limit only slightly exceeds the trigger level for Aroclor-1221 (0.19 μ g/L). However, a result of 0.19 μ g/L could have been detected in the sample because the laboratory reports results less than the quantitation limit but greater than the method detection limit, if detected in the sample.

The laboratory's MDLs for Aroclor-1221 for the regular Contract Laboratory Program (CLP) Pesticide/PCB method range from 0.15 to 0.18 μ g/L. The MDL for the modified CLP Pesticide/PCB method is equal to or less than 0.18 μ g/L, which is less than the trigger level for Arolcor-1221. In addition, the laboratory reports all results detected at concentrations greater than one-half the quantitation limit. Therefore, Aroclor-1221 is not considered to exceed its trigger level.

3.2.3 Post-Remedial-Action Monitoring Wells

A total of five post-remedial-action monitoring wells were sampled during the second quarterly event. The wells are located in (1) the area just northeast of remediation area 7-1 (wells IR07MW21A, IR07MW24A, and IR07MW25A), and (2) the area in the vicinity of where nickel was detected above the HGAL, which is northeast of remediation areas 7-3 and 7-5 (wells IR07MW20A1 and IR07MW26A). The purpose of collecting data for the five wells is to evaluate the effectiveness of contaminant source control on groundwater quality, which will be summarized in the annual report.

Samples collected from the following wells exceeded the screening criteria for metals:

- Well IR07MW20A1, for barium (635 $\mu g/L$) and zinc (204 $\mu g/L$)
- Well IR07MW21A1, for barium (720 μ g/L) and zinc (184 μ g/L)
- Well IR07MW24A, for barium (679 μ g/L) and zinc (156 μ g/L)
- Well IR07MW26A, for barium (697 μ g/L) and zinc (198 μ g/L)

Barium and zinc concentrations have increased by an order of magnitude since the previous quarterly sampling and the RI sampling that occurred in 1991 and 1992 (see Table 5).

3.2.4 Sentinel Wells

A total of seven sentinel wells were sampled during the second quarterly event. These wells are located near the inland edge of the approximate 5-year buffer zone indicated on Figure 2. No trigger levels were exceeded during this event.

3.2.5 VOC Monitoring Well

One VOC monitoring well was sampled during the second quarterly event. The monitoring well, IR10MW33A, is located near IR-10 to monitor the potential degradation of TCE to byproducts, including vinyl chloride. VOC results from monitoring wells IR10MW28A, IR10MW31A1, IR61MW05A, and PA50MW01A are used to assess the potential migration of TCE and its byproducts. Historical trends of TCE, cis-1,2-dichloroethene, 1,2-dichloroethene, and vinyl chloride are presented in Table 6.

In the second quarterly sampling event, trichloroethene, trans-1,2-dichloroethene, and cis-1,2-dichloroethene were detected at concentrations of 23 $\mu g/L$, 0.3 $\mu g/L$, and 13 $\mu g/L$, respectively. Vinyl chloride was not detected at the quantitation limit (0.5 $\mu g/L$). Vinyl chloride was not detected at IR10MW33A during the first two rounds of quarterly groundwater monitoring. In addition, TCE, cis-1,2-dichloroethene, trans-1,2-dichloroethene, and vinyl chloride have not been detected during the past two quarterly groundwater sampling events at monitoring wells IR10MW31A1 and PA50MW01A, which are downgradient from IR10MW33A, as summarized in Table 6. No numerical trigger levels were exceeded.

3.2.6 Utility Line Monitoring Well

One utility line monitoring well was sampled during the second quarterly event. The well, IR06MW42A, is located near IR-06 to monitor the utility line. No trigger levels were exceeded.

3.3 DATA QUALITY

Standard quality assurance and quality control (QA/QC) techniques in the field and in the laboratory ensured the quality of the data collected during this sampling event. Field QA/QC consisted of collecting field duplicate pairs, equipment rinsate blanks, trip blanks, and matrix spike/matrix spike duplicates (MS/MSD) in accordance with the QAPP (PRC 1996b) referenced in the Parcel B RAMP (TtEMI 1999a). Two field duplicate samples were collected for the 24 wells sampled, for a frequency

of 10 percent as specified in the QAPP. Field duplicate results for monitoring wells IR07MW28A and IR07MWS-2 are reported in Appendix A. Two equipment rinsate blanks were collected per crew for the 5-day sampling event, also as specified in the QAPP. Trip blanks containing analyte-free water were prepared by the laboratory and included in each of seven coolers containing samples for CLP VOC analysis. MS/MSD samples were collected at a frequency of one for each of the three sample delivery groups, as specified in the QAPP.

The data were validated by ETHIX of Modesto, California, in accordance with procedures presented in the following documents:

- "USEPA CLP National Functional Guidelines for Organic Data Review" (February 1994)
- "USEPA CLP National Functional Guidelines for Inorganic Data Review" (February 1994)
- TtEMI "Data Validation Guidelines for CLP Organic Analyses"
- TtEMI "Data Validation Guidelines for CLP Inorganic Analyses"
- TtEMI "Data Validation Guidelines for non-CLP Inorganic and Physical Analyses" (March 1998)
- "TtEMI CLEAN II Analytical Services Statement of Work" (May 1999)

No data was rejected. The data validation reports for the second-quarter event are included in Appendix D. The data quality per analysis type is summarized in Appendix A of each data validation report. An evaluation of the field duplicate precision is included in the data validation reports.

The data were examined to determine whether the barium, chromium, and zinc detected in groundwater samples at concentrations exceeding the trigger levels could be due to contamination introduced during field or laboratory procedures. The parameters reviewed are described in the following paragraphs.

Four equipment blanks were collected during this event to monitor sample collection and equipment decontamination procedures in the field. Three blanks were filtered, and the fourth blank was collected for both a dissolved (filtered) and total (unfiltered) metals analysis, to monitor sample collection procedures for the low-flow wells. Barium and chromium were not detected in any of the equipment blanks. The highest concentration of zinc in any of the equipment blanks was $2.3 \,\mu g/L$, which is less than the POC screening criterion of $81 \,\mu g/L$.

Results for instrument calibration blanks and preparation (method) blanks analyzed by the laboratory were examined in order to monitor laboratory procedures for potential sources of contamination. Barium was not detected in any of the blanks. The highest chromium concentration was 2.4 μ g/L, well below the POC screening criterion of 15.7 μ g/L. The highest zinc concentration was 6.5 μ g/L, again well below the POC screening criterion.

Additional laboratory QC parameters were examined to identify any potential problems with the analyses for barium, chromium, or zinc. All matrix spike (MS) and laboratory control sample (LCS) (or blank spike) recoveries met the QC limits; recoveries ranged from 94 to 104 percent. Elevated concentrations of sodium and magnesium in some of the samples (for example, sodium and magnesium were detected in IR07MW19A at concentrations of 8,090,000 and 1,060,000 µg/L, respectively) may potentially interfere with metals analysis; however, examination of (1) the interference check samples analyzed by the laboratory to verify the laboratory's background interelement and correction factors, and (2) the serial dilution samples analyzed to determine potential physical or chemical interferences due to the sample matrix did not indicate any analytical problems for barium, chromium, or zinc.

In addition, calculations for barium, chromium, and zinc were spot-checked and determined to be correctly calculated. There were no dilutions, and hence no errors due to dilution calculations.

In conclusion, the data did not show any evidence of barium, chromium, or zinc contamination resulting from field or laboratory procedures. Further investigation is necessary to identify the potential sources of those constituents. A third-quarter sampling event is planned and may help identify areas for additional investigation at the site.

3.4 DEVIATIONS FROM THE QUALITY ASSURANCE PROJECT PLAN OR PARCEL B REMEDIAL ACTION MONITORING PLAN

The following deviation from the Parcel B RAMP (TtEMI 1999a) was noted:

• The CLP pesticides/PCB analytical method was modified in order to meet the NAWQC screening criterion of 0.1 μg/L for PCBs; however, the quantitation limit for Aroclor-1221 could not be lowered below 0.2 μg/L due to limitations of the analytical method (EPA OLM03.1 modified).

3.5 CONCLUSIONS

Barium, chromium, and zinc concentrations exceeded trigger levels in 11 of 24 Parcel B RAMP monitoring wells. Historically, barium and zinc concentrations have not exceeded trigger levels in groundwater samples collected from these 11 wells, as summarized in Table 5. Chromium concentrations exceeded the trigger level during both of the first two quarters of sampling (September 1999 and January 2000), and are higher than the concentrations exhibited during the RI. Unvalidated results for barium, chromium, and zinc did not exceed trigger levels during the resampling event, which was included with the third-quarter sampling event in April 2000.

The Navy believes there is insufficient data to conclude that barium, chromium, and zinc concentrations are indicative of a continuing problem at HPS. Additional sampling rounds are necessary to assess trends in the concentrations of metals in groundwater at HPS.

The trigger levels for barium and chromium are based on the HGAL. The trigger level for zinc is also similar to the HGAL. Trigger levels are intended as screening tools to indicate that additional investigation may be necessary and are not intended as a concentration level that would suggest remedial action is required. Furthermore, there is natural variation in the concentration of constituents considered to be "ambient." Chromium concentrations that exceed trigger levels may be the result of this natural variation.

As stated in the Parcel B RAMP, the Navy is required to take the following actions when concentrations are found to exceed their trigger levels:

- Inform the Base Realignment and Closure (BRAC) Cleanup Team (BCT) within 10 business days
- Resample the well within 15 business days and analyze the sample for confirmation purposes
- Inform the BCT of the resampled results within 15 business days of receiving the results

The Navy notified the BCT of the second quarterly results that exceeded trigger levels on April 26, 2000. The BCT notification period was based on receipt of the validated results. In future quarterly sampling events, the notification period will commence once unvalidated results are received. The monitoring wells where concentrations exceeded trigger levels during the second-quarter event were resampled as part of the third quarterly sampling event, which occurred between Monday, April 24,

2000, and Tuesday, May 2, 2000. Unvalidated results were received on June 7, 2000. The BCT was notified of concentrations that exceeded trigger levels during the third-quarter monitoring event on June 21, 2000.

In accordance with the RAMP, if the resampled results confirm that the trigger levels have been exceeded, the Navy is to implement a response plan after discussing the issue with the agencies. The response plan may take several forms, depending on the degree to which the trigger level was exceeded and the time trend of analytical results, the specific contaminant involved, the perceived risk, and the nature of the populations or receptors potentially at risk (for example, human, ecological, or environmental).

Barium, chromium, and zinc concentrations at RAMP monitoring wells will be closely followed in future quarterly sampling events. The annual report will evaluate and summarize quarterly, semiannual, and annual monitoring results for the previous four quarters. The fourth-quarter groundwater sampling event is scheduled to begin on Wednesday, July 5, 2000.

REFERENCES

- PRC Environmental Management, Inc. (PRC). 1996a. "Parcel B Remedial Investigation, Draft Final Report, Hunters Point Shipyard (HPS), San Francisco, California." June 3.
- PRC. 1996b. "Basewide Quality Assurance Project Plan, HPS, San Francisco, California." Draft Final. May 24.
- Tetra Tech EM Inc. (TtEMI). 1999a. "Final Remedial Action Monitoring Plan, Parcel B Remedial Action, HPS, San Francisco, California." July 2.
- TtEMI. 1999b. "Draft Final Technical Memorandum, Nickel Screening and Implementation Plan, Hunters Point Shipyard, San Francisco, California." August 4.

TABLES

TABLE 1
SUMMARY OF WELLS SAMPLED AND ANALYSES PERFORMED

Monitoring Well Type	Well Identification Number	CLP VOC (OLM03.1)	CLP Metals (ILM04.0)	Hexavalent Chromium (EPA 7196A)	TPH-d (CA LUFT and EPA 8015)	TPH-g (CA LUFT and EPA 8015)	CLP SVOC (OLM03.1)	CLP Pesticides and PCBs (OLM03.1 modified)	CLP Low- Level VOA (OLM02.0)
Point-of- Compliance	IR26MW41A	Х	Х	X	X	X			
	IR46MW37A	X	X	X	X	X			
	IR10MW31A1	X	X	X	X	X		_	X
:	IR26MW45A	X	X	X	X	X			
:	IR07MW19A	X	X	X	X	X			
	PA50MW01A	X	X	X	X	Х			X
	IR07MWS-2	Х	Х	X	X	Х			
	IR07MWS-4	X	Х	X	Х	х			
Sentinel	IR07MW23A	Х	X	X	X	Х			
	UT03MW11A	Х	X	Х	Х	Х			
	IR61MW05A	X	X	Х	Х	х			
•	IR10MW28A	Х	Х	Χ '	Х	х			X
	IR25MW17A	Х	Х	Х	х	х			
	IR06MW45A	X	Х	Х	х	X			
	IR07MW27A	Х	X	Х	х	Х			
Post-Remedial Action	IR07MW21A1	Х	Х	Х	х	Х			
	IR07MW20A1	Х	X	X	X	X			

SUMMARY OF WELLS SAMPLED AND ANALYSES PERFORMED

Monitoring Well Type	Well Identification Number	CLP VOC (OLM03.1)	CLP Metals (ILM04.0)	Hexavalent Chromium (EPA 7196A)	TPH-d (CA LUFT and EPA 8015)	TPH-g (CA LUFT and EPA 8015)	CLP SVOC (OLM03.1)	CLP Pesticides and PCBs (OLM03.1 modified)	CLP Low- Level VOA (OLM02.0)
Post-Remedial Action (cont.)	IR07MW24A	Х	X	X	X	X			
	IR07MW25A	X	Х	X	X	X			-
	IR07MW26A	Х	X	X	X	X			
VOC	IR10MW33A	Х							X
On/Off-Site Migration	IR18MW21A	X	Х	X	X	Х	X	X	
	IR07MW28A	Х	Х	X	X	X	X	X	
Utility Lines	IR06MW42A	Х	Х	Х	X	X	X	Х	

Notes:

CLP Contract Laboratory Program

CA LUFT California leaking underground fuel tank

EPA U.S. Environmental Protection Agency

PCB Polychlorinated biphenyl

SVOC Semivolatile organic compound

TPH-d Total petroleum hydrocarbons as diesel
TPH-g Total petroleum hydrocarbons as gasoline

VOC Volatile organic compound
X Indicates analysis performed

TABLE 2

SUMMARY OF TRIGGER LEVELS FOR PARCEL B GROUNDWATER SAMPLING RESULTS

Monitoring Well Type	Trigger Levels
POC Monitoring Wells	NAWQC or HGALs, whichever is higher; TPH trigger levels to be determined during CAP preparation
Sentinel Wells	10 times the associated trigger level for the POC monitoring wells
Post-Remedial-Action Monitoring Wells	Same as the POC monitoring wells
VOC Monitoring Well	No trigger levels; increase in vinyl chloride to be measured
On- and Off-Site Migration Monitoring Wells	Same as POC monitoring wells for well IR07MW28A; same as sentinel wells for well IR18MW21A
Utility Line Monitoring Well	Southeast Water Pollution Control Plant discharge requirements

Notes:

CAP

Corrective action plan

HGAL

Hunters Point Shipyard groundwater ambient level

NAWQC

National Ambient Water Quality Criteria

POC

Point-of-compliance

TPH VOC Total petroleum hydrocarbons Volatile organic compound

TABLE 3
COMPARISON OF TRIGGER LEVEL CRITERIA

	POC, PRA, & On-/Off-Site Migration Well Trigger Level (µg/L)	Sentinel & On-/Off-Site Migration Well Trigger Level (µg/L)	Southeast WPCP Discharge Requirements (µg/L)	
Constituent	POC Wells and Post Remedial Action Monitoring Wells and On- and Off-Site Migration Well IR07MW28A	Sentinel Wells and On- and Off-Site Migration Well IR18MW21A	Utility Lines Well	
TPH-g and TPH-d	NA	NA	NA	
PAH	300	3,000	NA	
PCBs ^a	0.19	1.9	5,000 ^b	
1,2-Dichloroethene	22,400	224,000	NA NA	
Trichloroethene	200	2,000	NA	
Vinyl Chloride	55	550	200	
Antimony	500	5,000	15,000 ^b	
Arsenic	36	360	4,000	
Barium	504	5,040	100,000 ^b	
Beryllium	1.40	14	750 ^b	
Cadmium	9.3	93	500	
Chromium	15.7	157	5,000	
Chromium (VI)	NA '	NA	5,000 ^b	
Cobalt	20.8	208	80,000 ^b	
Copper	28	280	4,000	
Lead	14.4	144	1,500	
Manganese	8,140	81,400	NA	
Mercury	0.60	6	50	

TABLE 3 (Continued)

COMPARISON OF TRIGGER LEVEL CRITERIA

	POC, PRA, & On-/Off-Site Migration Well Trigger Level (μg/L)	Sentinel & On-/Off-Site Migration Well Trigger Level (µg/L)	Southeast WPCP Discharge Requirements (µg/L) Utility Lines Well	
Constituent	POC Wells and Post Remedial Action Monitoring Wells and On- and Off-Site Migration Well IR07MW28A	Sentinel Wells and On- and Off-Site Migration Well IR18MW21A		
Nickel	96.5	965	2,000	
Silver	7.43	74.3	600	
Thallium	13.0	130	7,000b	
Zinc	81	810	7,000	

N	Ot.	20	٠
1.4	L III	C.5	

a PCBs applied to trigger level: Aroclor-1016, Aroclor-1221, Aroclor-1232, Aroclor-1242, Aroclor-1248, Aroclor-1254, and Aroclor-1260.

b Soluble Threshold Limit Concentration. California Code of Regulations, Title 22, Section 66261.24(a)(2)(A) (Tetra Tech, 1999)

DNAPL Dense nonaqueous-phase liquid

HGAL Hunters Point Shipyard groundwater ambient levels for metals in A-aquifer groundwater

NA Not applicable

NAWQC National Ambient Water Quality Criteria

PCB Polychlorinated biphenyl POC Point-of-compliance PRA Post-remedial-action

SVOC Semivolatile organic compound

TPH-d Total petroleum hydrocarbons as diesel

TPH-g Total petroleum hydrocarbons as gasoline

VOC Volatile organic compounds
WPCP Water pollution control plant

TABLE 4
SUMMARY OF WATER LEVEL MEASUREMENTS TAKEN JANUARY 10, 2000

Well ID Number	Depth to Groundwater (feet btoc)	TOC Elevation (feet above MSL)	Water Level Elevation (feet above MSL)	
IR06MW42A	11.02	11.88	0.86	
IR06MW45A	6.51	9.93	3.42	
IR07MW19A	9.00	9.6	0.60	
IR07MW20A1	8.56	9.65	1.09	
IR07MW21A1	13.42	14.65	1.23	
IR07MW23A	14.28	15.76	1.48	
IR07MW24A	12.23	13.56	1.33	
IR07MW25A	10.46	11.91	1.45	
IR07MW26A	11.46	12.69	1.23	
IR07MW27A	13.55	16.15	2.60	
IR07MW28A	10.48	12.03	1.55	
IR07MWS-2	11.27	12.71	1.44	
IR07MWS-4	14.54	15.88	1.34	
IR10MW28A	11.12	13.65	2.53	
IR10MW31A1	9.29	10.34	1.05	
IR10MW33A	8.09	10.25	2.16	
IR18MW21A	15.69	17.62	1.93	
IR25MW17A	8.53	10.28	1.75	
IR26MW41A	7.09	10.12	3.03	
IR26MW45A	7.20	8.28	1.08	
IR46MW37A	7.73	9.56	1.83	
IR61MW05A	7.87	10.13	2.26	
PA50MW01A	8.27	9.14	0.87	
UT03MW11A	7.69	9.93	2.24	

Notes:

btoc Below top of casing

MSL Mean sea level

TOC Top of casing

TABLE 5

SECOND QUARTER RESULTS EXCEEDING TRIGGER LEVELS,
WITH ASSOCIATED HISTORICAL RESULTS

	RI	RI	RI	First Quarter Event	Second Quarter Event	Third Quarter (Resampling) Event
IR07MW19A						
Sample Date	7/30/91	12/5/91	6/5/92	9/3/99	1/13/00	4/27/00
Barium	89.4	67.5	79.7	120	552	72.6
Zinc	7.3 ND	27.1	19.7	7.3 ND	134	1.5 ND
IR07MW20A1						
Sample Date	7/25/91	12/2/91	6/1/92	9/3/99	1/13/00	4/25/00
Barium	81.7	52	30.5	104	635	58.1
Zinc	7 ND	3.9 ND	16.5 ND	3 ND	204	1.5 ND
IR07MW21A1						
Sample Date	7/29/91	12/4/91	6/3/92	9/3/99	1/13/00	4/25/00
Barium	91.6	108	93.5	104	720	77.5
Zinc	13.2	6.2	16.5 ND	3 ND	184	3.0
IR07MW24A*						
Sample Date	NA	NA	NA	9/3/99	1/14/00	4/25/00
Barium				132	679	158
Zinc				3.8 ND	156	7.4
IR07MW26A*						
Sample Date	NA	NA	NA	9/2/99	1/14/00	4/25/00
Barium		,		237	697	136
Zinc				5.3 ND	198	1.5 ND
IR07MW28A*						
Sample Date	NA	NA	NA	9/2/99	1/14/00	4/26/00
Barium				120	637	102
Zinc				3.6 ND	178	26.3
IR07MWS-2						
Sample Date	7/26/91	12/5/91	6/3/92	9/3/99	1/13/00	4/25/00
Zinc	1.6 ND	6.1 ND	16.5 ND	3 ND	112	1.5 ND
IR07MWS-4						
Sample Date	7/25/91	12/2/91	6/1/92	9/1/99	1/13/00	4/25/00
Barium	92.4	82.7	67.4	58.4	716	10.7 ND
Chromium (soluble)	2.9	3 ND	2.5 ND	23.6	16.4	2.2 ND
Chromium (total)	NA NA	NA	NA NA	24.5	NA	NA
Zinc	15.4 ND	10.3	16.5 ND	6.2 ND	227	3.8
IR10MW31A1	13.7110	10.5	10.0 1.0		 	
Sample Date	12/23/93	8/11/94	5/23/95	9/1/99	1/12/00	4/28/00
Barium	19.3	55.9	85.4	64.5	705	62.3
Zinc	6.4 ND	3.1 ND	11.1	3 ND	162	4.3

TABLE 5 (Continued)

SECOND QUARTER RESULTS EXCEEDING TRIGGER LEVELS, WITH ASSOCIATED HISTORICAL RESULTS

	RI	RI	RI	First Quarter Event	Second Quarter Event	Third Quarter (Resampling) Event
IR26MW45A* Sample Date Barium Zinc	NA	NA	NA	9/1/99 149 3.2	1/12/00 744 200	4/26/00 109 1.5 ND
PA50MW01A Sample Date Zinc	3/16/93 6 ND	8/17/94 4.7 ND	6/14/95 11.1 ND	9/1/99 3 ND	1/12/00 92	4/28/00 1.5 ND

Notes:

All concentrations are reported in micrograms per liter.

Third quarter (resampling) event concentrations have not been validated.

Bold font indicates concentration exceeds applicable trigger level.

* Monitoring well was installed in 1999; therefore, historical data is not available.

Trigger Levels:

Barium

 $504 \mu g/L$ (based on HGAL)

Chromium

15.7 μg/L (based on HGAL)

Zinc

81 µg/L (based on NAWQC)

HGAL

Hunters Point Shipyard groundwater ambient levels for metals in A-aquifer groundwater

NAWOC

National Ambient Water Quality Criteria for protection of saltwater aquatic life

NA

Not applicable

ND

Not detected. Concentration reported is the analytical detection limit.

RI

Remedial investigation

TABLE 6

HISTORICAL RESULTS AT MONITORING WELLS IN PROXIMITY TO IR-10 TRICHLORETHENE GROUNDWATER PLUME

	RI	RI	RI	RI	RI	RI	First Quarter Event	Second Quarter Event
IR10MW28A								
Sample Date	10/31/91	01/13/92	11/09/93	02/22/94	05/16/94	08/22/94	09/03/99	01/12/00
1,2-Dichloroethene (total)	5 ND	5 ND	NA	NA	NA	NA	NA	NA
cis-1,2-Dichloroethene	NA	NA	1 ND	2 ND	1 ND	1 ND	3 ND	0.6
Trichloroethene	38	28	27	30	42	45	54	40
Vinyl Chloride	10 ND	10 ND	1 ND	2 ND	1 ND	1 ND	2 ND	1 ND
IR10MW31A1								
Sample Date	12/23/93	8/11/94	5/23/95	NA	NA	NA	09/03/99	01/12/00
1,2-Dichloroethene (total)	10 ND	10 ND	10 ND				NA	NA
cis-1,2-Dichloroethene	NA	NA	NA	}			1 ND	1 ND
Trichloroethene	10 ND	10 ND	10 ND				1 ND	1 ND
Vinyl Chloride	10 ND	10 ND	10 ND				0.5 ND	0.5 ND
IR10MW33A*								
Sample Date	NA	NA	NA	NA	NA	NA	09/03/99	01/12/00
1,2-Dichloroethene (total)							NA	NA
cis-1,2-Dichloroethene			ļ	ļ			10	13
Trichloroethene							19	23
Vinyl Chloride							0.5 ND	0.5 ND
IR61MW05A								
Sample Date	8/31/95	10/2/95	11/8/95	NA	NA	NA	9/3/99	1/13/00
1,2-Dichloroethene (total)	0.5 ND	0.5 ND	0.5 ND				10 ND	NA
cis-1,2-Dichloroethene	NA	NA	NA				NA	1 ND
Trichloroethene	0.5 ND	0.5 ND	0.5 ND				10 ND	1 ND
Vinyl Chloride	0.5 ND	0.5 ND	0.5 ND				10 ND	0.5 ND

TABLE 6 (Continued)

HISTORICAL RESULTS AT MONITORING WELLS IN PROXIMITY TO IR-10 TRICHLORETHENE GROUNDWATER PLUME

	RI	RI	RI	RI	RI	RI	First Quarter Event	Second Quarter Event
PA50MW01A								
Sample Date	3/16/93	8/17/94	6/14/95	NA	NA	NA	9/1/99	1/13/00
1,2-Dichloroethene (total)	10 ND	10 ND	10 ND				10 ND	NA ·
cis-1,2-Dichloroethene	NA	NA	NA				NA	1 ND
Trichloroethene	10 ND	10 ND	10 ND]		10 ND	1 ND
Vinyl Chloride	10 ND	10 ND	10 ND				10 ND	0.5 ND

Notes:

All concentrations are reported in micrograms per liter.

* Monitoring well was installed in 1999; therefore, historical data is not available.

Trigger Levels:

cis-1,2-Dichlorethene

 $22,400 \mu g/L$

Dichloroethene (total)

22,400 μg/L

Trichloroethene

200 μg/L

Vinyl chloride

55 μg/L

NA

Not applicable

ND

Not detected. Concentration reported is the analytical detection limit.

RI

Remedial investigation

FIGURES

DEPARTMENT OF THE NAVY

NAVAL FACILITIES ENGINEERING COMMAND

SOUTHWEST DIVISION

SAN DIEGO, CALIFORNIA

HUNTERS POINT SHIPYARD

SAN FRANCISCO, CALIFORNIA

FIGURE 1
FACILITY LOCATION MAP
HUNTERS POINT SHIPYARD

APPENDIX A

SUMMARY OF ANALYTICAL RESULTS FOR JANUARY 2000 SAMPLING EVENT WITH TRIGGER LEVELS

IR Site	Monitoring Well ID	Analyte	Analytical Result (ug/L)	Trigger Level (ug/L)	Units	Analytical Group	Sample Number	Associated Sample Number
IR-06	IR06MW42A	UTILITY LINE MONITORING				VOA	0002P003	
IR-06	IR06MW42A	1,1,1-TRICHLOROETHANE	10 ND		ug/L		0002P003	
IR-06	IR06MW42A	1,1,2,2-TETRACHLOROETHANE	10 ND		ug/L	VOA VOA	0002P003	
IR-06	IR06MW42A	1,1,2-TRICHLOROETHANE	10 ND		ug/L			
IR-06	IR06MW42A	1,1-DICHLOROETHANE	10 ND		ug/L	VOA	0002P003	
IR-06	IR06MW42A	1,1-DICHLOROETHENE	10 ND		ug/L	VOA	0002P003	
∤R-06	IR06MW42A	1,2,4-TRICHLOROBENZENE	14 ND		ug/L	SVOA	0002P003A	
IR-06	IR06MW42A	1,2-DICHLOROBENZENE	7 ND		ug/L	SVOA	0002P003A	
IR-06	IR06MW42A	1,2-DICHLOROETHANE	2		ug/L	VOA	0002P003	
IR-06	IR06MW42A	1,2-DICHLOROETHENE (TOTAL)	10 ND		ug/L	VOA	0002P003	
IR-06	IR06MW42A	1,2-DICHLOROPROPANE	10 ND		ug/L	VOA	0002P003	
IR-06	IR06MW42A	1,3-DICHLOROBENZENE	7 ND		ug/L	SVOA	0002P003A	
IR-06	IR06MW42A	1,4-DICHLOROBENZENE	7 ND		+	SVOA	0002P003A	
IR-06	IR06MW42A	2,2'-OXYBIS(1-CHLOROPROPANE)	14 ND		ug/L	SVOA	0002P003A	
IR-06	IR06MW42A	2,4,5-TRICHLOROPHENOL	36 ND		ug/L	SVOA	0002P003A	
IR-06	IR06MW42A	2,4,6-TRICHLOROPHENOL	14 ND		ug/L	SVOA	0002P003A	
IR-06	IR06MW42A	2,4-DICHLOROPHENOL	14 ND		ug/L	SVOA	0002P003A	
IR-06	IR06MW42A	2,4-DIMETHYLPHENOL	14 ND		ug/L	SVOA	0002P003A	
IR-06	IR06MW42A	2.4-DINITROPHENOL	36 ND		ug/L	SVOA	0002P003A	
IR-06	IR06MW42A	2.4-DINITROTOLUENE	14 ND	-	ug/L	SVOA	0002P003A	
IR-06	IR06MW42A	2.6-DINITROTOLUENE	14 ND	_	ug/L	SVOA	0002P003A	
IR-06	IR06MW42A	2-BUTANONE	10 ND		ug/L	VOA	0002P003	
	IR06MW42A	2-CHLORONAPHTHALENE	14 ND		ug/L	SVOA	0002P003A	
IR-06		2-CHLOROPHENOL	14 ND		ug/L	SVOA	0002P003A	
IR-06	IR06MW42A		10 ND		ug/L	VOA	0002P003	
IR-06	IR06MW42A	2-HEXANONE	6 -		ug/L	SVOA	0002P003A	
IR-06	IR06MW42A	2-METHYLNAPHTHALENE	14 ND		ug/L	SVOA	0002P003A	
IR-06	IR06MW42A	2-METHYLPHENOL	36 ND		ug/L	SVOA	0002P003A	
IR-06	IR06MW42A	2-NITROANILINE	14 ND		ug/L	SVOA	0002P003A	
IR-06	IR06MW42A	2-NITROPHENOL	14 ND		ug/L	SVOA	0002P003A	
IR-06	IR06MW42A	3,3'-DICHLOROBENZIDINE	36 ND		ug/L	SVOA	0002P003A	
IR-06	IR06MW42A	3-NITROANILINE			ug/L	PEST	0002P003A	
IR-06	IRO6MW42A	4,4'-DDD	0.02 ND 0.02 ND		ug/L	PEST	0002P003A	
IR-06	IR06MW42A	4,4'-DDE			ug/L	PEST	0002P003A	
IR-06	IR06MW42A	4,4'-DDT	0.02 ND		ug/L	SVOA	0002P003A	
IR-06	IR06MW42A	4,6-DINITRO-2-METHYLPHENOL	36 ND			SVOA	0002P003A	
IR-06	IR06MW42A	4-BROMOPHENYL-PHENYLETHER	14 ND	 -	ug/L		0002P003A	
IR-06	IR06MW42A	4-CHLORO-3-METHYLPHENOL	14 ND	<u> </u>	ug/L	SVOA	0002F003A	
IR-06	IR06MW42A	4-CHLOROANILINE	14 ND	<u> </u>	ug/L	SVOA		
IR-06	IR06MW42A	4-CHLOROPHENYL-PHENYLETHER	14 ND		ug/L	SVOA	0002P003A	
IR-06	IR06MW42A	4-METHYL-2-PENTANONE	10 ND	<u> </u>	ug/L	VOA	0002P003	
IR-06	IR06MW42A	4-METHYLPHENOL	14 ND			SVOA	0002P003A	
IR-06	IR06MW42A	4-NITROANILINE	36 ND			SVOA	0002P003A	
IR-06	IR06MW42A	4-NITROPHENOL	36 ND			SVOA	0002P003A	<u> </u>
IR-06	IR06MW42A	ACENAPHTHENE	64			SVOA	0002P003A	
IR-06	IR06MW42A	ACENAPHTHYLENE	14 ND			SVOA .	0002P003A	ļ
IR-06	IR06MW42A	ACETONE	10 ND		ug/L	VOA	0002P003	
IR-06	IR06MW42A	ALDRIN	0.01 ND		ug/L	PEST	0002P003A	ļ
IR-06	IR06MW42A	ALPHA-BHC	0.01 ND		ug/L	PEST	0002P003A	ļ
IR-06	IR06MW42A	ALPHA-CHLORDANE	0.01 ND		ug/L	PEST	0002P003A	
IR-06	IR06MW42A	ALUMINUM	15.5 ND	-	ug/L	DMETAL	0002P003A	ļ
IR-06	IR06MW42A	ANTHRACENE	7 ~		ug/L	SVOA	0002P003A	
IR-06	IR06MW42A	ANTIMONY	4.9 -	15,000	ug/L	DMETAL	0002P003A	
IR-06	IR06MW42A	AROCLOR-1016	0.1. ND	5,000	ug/L	PEST	0002P003A	
IR-06	IR06MW42A	AROCLOR-1221	0.2 ND	5,000	ug/L	PEST	0002P003A	ļ
IR-06	IR06MW42A	AROCLOR-1232	0.1 ND	5,000	ug/L	PEST	0002P003A	L
IR-06	IR06MW42A	AROCLOR-1242	0.1 ND	5,000	ug/L	PEST	0002P003A	
	IR06MW42A	AROCLOR-1242 AROCLOR-1248	0.1 ND	5,000	ug/L	PEST	0002P003A	
IR-06		AROCLOR-1254	0.1 ND	5,000	ug/L	PEST	0002P003A	
IR-06	IRO6MW42A		0.1 ND	5,000	ug/L	PEST	0002P003A	
IR-06	IR06MW42A	AROCLOR-1260 ARSENIC	5.3 ND	4,000	ug/L	DMETAL	0002P003A	

IR Site	Monitoring Weil ID	Analyte	Analytical Result (ug/L)	Trigger Level (ug/L)	Units	Analytical Group	Sample Number	Associated Sample Number
IR-06	IR06MW42A	BARIUM	691 -	100,000	ug/L	DMETAL	0002P003A	
	IR06MW42A	BENZENE	10 ND		ug/L	VOA	0002P003	
	IR06MW42A	BENZO(A)ANTHRACENE	14 ND		ug/L	SVOA	0002P003A	
	IR06MW42A	BENZO(A)PYRENE	14 ND			SVOA	0002P003A	
R-06		BENZO(B)FLUORANTHENE	14 ND		ug/L	SVOA	0002P003A	
IR-06	IR06MW42A	BENZO(G,H,I)PERYLENE	14 ND		ug/L	SVOA	0002P003A	
IR-06	IR06MW42A	BENZO(K)FLUORANTHENE	14 ND		+	SVOA	0002P003A	
IR-06	IR06MW42A	BERYLLIUM	0.25 ND	750	ug/L	DMETAL	0002P003A	
IR-06	IR06MW42A	BETA-BHC	0.01 ND		ug/L	PEST	0002P003A	
IR-06	IR06MW42A	BIS(2-CHLOROETHOXY)METHANE	14 ND		ug/L	SVOA SVOA	0002P003A	
IR-06	IR06MW42A	BIS(2-CHLOROETHYL)ETHER	14 ND		ug/L ug/L	SVOA	0002P003A	
IR-06	IR06MW42A	BIS(2-ETHYLHEXYL)PHTHALATE	6 ND	 _	ug/L	VOA	0002P003	
IR-06	IR06MW42A	BROMODICHLOROMETHANE	10 ND		ug/L	VOA	0002P003	
	IR06MW42A	BROMOFORM	10 ND		ug/L	VOA	0002P003	
IR-06	IR06MW42A	BROMOMETHANE	14 ND		ug/L	SVOA	0002P003A	
IR-06	IR06MW42A	BUTYLBENZYLPHTHALATE	0.2 ND	500		DMETAL	0002P003A	
IR-06	IR06MW42A	CADMIUM	65,900 -	- 300	ug/L	DMETAL	0002P003A	
IR-06	IR06MW42A	CALCIUM	5 -		ug/L	SVOA	0002P003A	
IR-06	IR06MW42A	CARBAZOLE	10 ND		ug/L	VOA	0002P003	
IR-06	IR06MW42A	CARBON DISULFIDE CARBON TETRACHLORIDE	10 ND		ug/L	VOA	0002P003	
IR-06	IR06MW42A	CHLOROBENZENE	10 ND		ug/L	VOA	0002P003	
IR-06	IR06MW42A	CHLOROETHANE	10 ND		ug/L	VOA	0002P003	
IR-06	IR06MW42A	CHLOROFORM	10 ND		ug/L	VOA	0002P003	L
IR-06 IR-06	IR06MW42A	CHLOROMETHANE	10 ND		ug/L	VOA	0002P003	
IR-06	IR06MW42A	CHROMIUM	1 ND	5,000	ug/L	DMETAL	0002P003A	
IR-06	IR06MW42A	CHROMIUM VI	10 ND	5,000	ug/L	CHROM	0002P003A	
IR-06	IR06MW42A	CHRYSENE	14 ND	-	ug/L	SVOA	0002P003A	
IR-06	IR06MW42A	CIS-1,3-DICHLOROPROPENE	10 ND		ug/L	VOA	0002P003	<u> </u>
IR-06	IR06MW42A	COBALT	1,3 ND	80,000	ug/L	DMETAL	0002P003A	
IR-06	IR06MW42A	COPPER	1.6 ND	4,000	ug/L	DMETAL	0002P003A	
IR-06	IR06MW42A	DELTA-BHC	0.01 ND		ug/L	PEST	0002P003A	
IR-06	IR06MW42A	DIBENZ(A,H)ANTHRACENE	14 ND		ug/L	SVOA	0002P003A	
IR-06	IR06MW42A	DIBENZOFURAN	12 -	ļ=_	ug/L	SVOA	0002P003A	
IR-06	IR06MW42A	DIBROMOCHLOROMETHANE	10 ND	<u> </u>	ug/L	VOA	0002P003	
IR-06	IR06MW42A	DIELDRIN	0.02 ND		ug/L	PEST	0002P003A	
IR-06	IR06MW42A	DIESEL RANGE ORGANICS	1,000	1,250	ug/L	TPHEXT	0002P003A 0002P003A	
IR-06	IR06MW42A	DIETHYLPHTHALATE	14 ND	ļ	ug/L	SVOA	0002P003A	
IR-06	IR06MW42A	DIMETHYLPHTHALATE	14 ND		ug/L	SVOA	0002P003A	
IR-06	IR06MW42A	DI-N-BUTYLPHTHALATE	14 ND	 		SVOA	0002P003A	
IR-06	IR06MW42A	DI-N-OCTYLPHTHALATE	14 ND		ug/L ug/L	PEST	0002P003A	
IR-06	IR06MW42A	ENDOSULFAN I	0.01 ND 0.02 ND	 	ug/L	PEST	0002P003A	
IR-06	IR06MW42A	ENDOSULFAN II	0.02 ND	 	ug/L	PEST	0002P003A	1
IR-06	IR06MW42A	ENDOSULFAN SULFATE	0.02 ND	 	ug/L	PEST	0002P003A	1
IR-06	IR06MW42A	ENDRIN ALDELYDE	0.02 ND	 	ug/L	PEST	0002P003A	
IR-06	IRO6MW42A	ENDRIN ALDEHYDE	0.02 ND		ug/L	PEST	0002P003A	
IR-06	IRO6MW42A	ENDRIN KETONE	10 ND		ug/L	VOA	0002P003	
IR-06	IRO6MW42A	FLUORANTHENE	15 -	-	ug/L	SVOA	0002P003A	
IR-06	IRO6MW42A		12 -		ug/L	SVOA	0002P003A	1
IR-06	IRO6MW42A	GAMMA-BHC (LINDANE)	0.01 ND	T	ug/L	PEST	0002P003A	
IR-06	IRO6MW42A	GAMMA-CHLORDANE	0.01 ND	-	ug/L	PEST	0002P003A	1
IR-06	IR06MW42A	GASOLINE RANGE ORGANICS	300	1,250	ug/L	TPHPRG	0002P003A	
IR-06	IR06MW42A	HEPTACHLOR	0.002 ND		ug/L	PEST	0002P003A	
IR-06	IR06MW42A		0.002 ND		ug/L	PEST	0002P003A	1
IR-06	IR06MW42A	HEXACHLOROBENZENE	14 ND		ug/L	SVOA	0002P003A	1
IR-06	IRO6MW42A	HEXACHLOROBUTADIENE	14 ND		ug/L	SVOA	0002P003A	1
IR-06	IRO6MW42A	HEXACHLOROCYCLOPENTADIENE	14 ND	-	ug/L	SVOA	0002P003A	
IR-06	IR06MW42A	HEXACHLOROETHANE	14 ND		ug/L	SVOA	0002P003A	
IR-06	IR06MW42A	INDENO(1,2,3-CD)PYRENE	14 ND		ug/L	SVOA	0002P003A	<u> </u>

IR Site		Analyte	Analytical Result (ug/L)	Trigger Level (ug/L)	Units		Sample Number	Associated Sample Number
IR-06	IR06MW42A	IRON	2,790 -		ug/L	DMETAL	0002P003A	
IR-06	IR06MW42A	ISOPHORONE	14 ND		ug/L	SVOA	0002P003A	
IR-06	IR06MW42A	LEAD	1.3 ND	1,500	ug/L	DMETAL	0002P003A	<u> </u>
IR-06	IR06MW42A	MAGNESIUM	85,900		ug/L	DMETAL	0002P003A	
IR-06	IR06MW42A	MANGANESE	1,020		ug/L	DMETAL	0002P003A	
IR-06		MERCURY	0.11 ND	50	ug/L_	DMETAL	0002P003A	
IR-06	IR06MW42A	METHOXYCHLOR	0.1 ND		+	PEST	0002P003A	
IR-06	IR06MW42A	METHYLENE CHLORIDE	10 ND			VOA DMETAL	0002P003 0002P003A	
IR-06	IR06MW42A	MOLYBDENUM	8		ug/L	TPHEXT	0002P003A	
IR-06	IR06MW42A	MOTOR OIL RANGE ORGANICS	400 97	<i></i>	ug/L ug/L	SVOA	0002P003A	
IR-06		NAPHTHALENE	1.7 ND	2,000		DMETAL	0002P003A	ļ —
IR-06	IR06MW42A	NICKEL	1.7 ND	2,000	ug/L	SVOA	0002P003A	
IR-06		NITROBENZENE	14 ND		ug/L	SVOA	0002P003A	
IR-06		N-NITROSO-DI-N-PROPYLAMINE N-NITROSODIPHENYLAMINE	14 ND			SVOA	0002P003A	
IR-06 IR-06		PENTACHLOROPHENOL	36 ND		ug/L	SVOA	0002P003A	
IR-06		PHENANTHRENE	2 -		ug/L	SVOA	0002P003A	
IR-06	IR06MW42A	PHENOL	14 ND		ug/L	SVOA	0002P003A	
IR-06		POTASSIUM	16,600 _		ug/L	DMETAL	0002P003A	
	IR06MW42A	PROPANE, 2-METHOXY-2-METHYL-	5 ND		ug/L	VOA	0002P003	
IR-06	IR06MW42A	PYRENE	8 -			SVOA	0002P003A	
IR-06	IR06MW42A	SELENIUM	2.5 ND		+	DMETAL	0002P003A	
IR-06	IR06MW42A	SILVER	1 ND	600		DMETAL	0002P003A	
IR-06		SODIUM	163,000		_	DMETAL	0002P003A	
IR-06	IR06MW42A	STYRENE	10 ND		ug/L	VOA	0002P003	
IR-06	IR06MW42A	TETRACHLOROETHENE	10 ND			VOA	0002P003	
IR-06	IR06MW42A	THALLIUM	4.7 ND	7,000	ug/L	DMETAL	0002P003A	
IR-06	IR06MW42A	TOLUENE	10 ND	_	ug/L	VOA	0002P003	
IR-06	IR06MW42A	TOXAPHENE	0.6 ND	-	ug/L	PEST	0002P003A	
IR-06	IR06MW42A	TRANS-1,3-DICHLOROPROPENE	10 ND		ug/L	VOA	0002P003	
IR-06	IR06MW42A	TRICHLOROETHENE	10 ND		ug/L	VOA	0002P003	
IR-06	IR06MW42A	VANADIUM	1.8 ND		ug/L	DMETAL	0002P003A	
IR-06	IR06MW42A	VINYL CHLORIDE	10 ND	200	ug/L	VOA	0002P003	
IR-06	IR06MW42A	XYLENE (TOTAL)	10 ND		ug/L	VOA	0002P003	
IR-06	IR06MW42A	ZINC	143	7,000	ug/L	DMETAL	0002P003A	
IR-06	IR06MW45A	SENTINEL MONITORING W						
IR-06	IR06MW45A	1,1,1-TRICHLOROETHANE	10 ND		ug/L	VOA	0002F004	
IR-06		1,1,2,2-TETRACHLOROETHANE	10 ND		_	VOA	0002F004	
		1,1,2-TRICHLOROETHANE	10 ND			VOA	0002F004	
		1,1-DICHLOROETHANE	10 ND				0002F004	
		1,1-DICHLOROETHENE	10 ND				0002F004	
		1,2-DICHLOROETHANE	10 ND			VOA	0002F004	
		1,2-DICHLOROETHENE (TOTAL)	10 ND	224,000		VOA	0002F004	
		1,2-DICHLOROPROPANE	10 ND			VOA	0002F004	
IR-06		2-BUTANONE	10 ND			VOA	0002F004	
		2-HEXANONE	10 ND			VOA	0002F004	
		4-METHYL-2-PENTANONE	10 ND			VOA VOA	0002F004 0002F004	
		ACETONE	10 ND			TMETAL	0002F004	
		ALUMINUM	781 ND 30.2 ND				0002F004F	
		ALUMINUM	2.2 ND	5,000			0002F004	
	IR06MW45A IR06MW45A	ANTIMONY	6.2	5,000			0002F004F	
		ANTIMONY	5.8 ND	360	_		0002F004	
		ARSENIC	2.5 ND	360			0002F004F	
IR-06		ARSENIC BARIUM	49.6 -	5,040			0002F004	
		BARIUM	486	5,040			0002F004F	
		BENZENE	10 ND				0002F004	
		BERYLLIUM	0.1 ND	14		TMETAL	0002F004	
		BERYLLIUM	0.11 ND	14			0002F004F	
		UC-11 ECION	10 ND			VOA	0002F004	

IR Site	Monitoring Well ID	Analyte	Analytical Result (ug/L)	Trigger Level (ug/L)	Units	Analytical Group	Sample Number	Associated Sample Number
IR-06	IR06MW45A	BROMOFORM	10 ND		ug/L	VOA	0002F004	
IR-06	IR06MW45A	BROMOMETHANE	10 ND		ug/L	VOA	0002F004	
IR-06	IR06MW45A	CADMIUM	0.2 ND	93	ug/L	TMETAL	0002F004	
IR-06	IR06MW45A	CADMIUM	0.99 ND	93	ug/L	DMETAL	0002F004F	
IR-06	IR06MW45A	CALCIUM	105,000		ug/L	TMETAL	0002F004	ļ
IR-06	IR06MW45A	CALCIUM	131,000 -		ug/L	DMETAL	0002F004F	
IR-06	IR06MW45A	CARBON DISULFIDE	10 ND		ug/L	VOA	0002F004	
IR-06	IR06MW45A	CARBON TETRACHLORIDE	10 ND	-	ug/L	VOA	0002F004	
	IR06MW45A	CHLOROBENZENE	10 ND	-	ug/L	VOA	0002F004	ļ <u>.</u>
IR-06	IR06MW45A	CHLOROETHANE	10 ND		ug/L	VOA	0002F004	<u></u>
_	IR06MW45A	CHLOROFORM	10 ND		ug/L	VOA	0002F004	l
	IR06MW45A	CHLOROMETHANE	10 ND		ug/L	VOA	0002F004	
_	IR06MW45A	CHROMIUM	6.5 ND	157	ug/L	TMETAL	0002F004	
	IR06MW45A	CHROMIUM	4.5 ND	157	_	DMETAL	0002F004F	
	IR06MW45A	CHROMIUM VI	10 ND	-	ug/L	CHROM	0002F004	
		CIS-1,3-DICHLOROPROPENE	10 ND		ug/L	VOA	0002F004	
IR-06	IRO6MW45A		1.3 ND	208	ug/L	TMETAL	0002F004	
IR-06	IRO6MW45A	COBALT	3.8 ND	208	ug/L	DMETAL	0002F004F	
	IR06MW45A	COBALT	32.8 -	280	ug/L	TMETAL	0002F004	
	IR06MW45A	COPPER	19.1 -	280	ug/L	DMETAL	0002F004F	
	IR06MW45A	COPPER	19.1 -	200	ug/L	VOA	0002F004	
	IR06MW45A	DIBROMOCHLOROMETHANE				TPHEXT	0002F004	
	IR06MW45A	DIESEL RANGE ORGANICS	100 -	1,250	ug/L	VOA	0002F004	
IR-06	IR06MW45A	ETHYLBENZENE	10 ND		ug/L	TPHPRG	0002F004	
IR-06	IR06MW45A	GASOLINE RANGE ORGANICS	50 ND	1,250	ug/L			
IR-06	IR06MW45A	IRON	1,550	=	ug/L	TMETAL	0002F004	
	IR06MW45A	IRON	381 -		+	DMETAL	0002F004F	
IR-06	IR06MW45A	LEAD	17	144	ug/L	TMETAL	0002F004	
IR-06	IR06MW45A	LEAD	1.3 ND	144	ug/L	DMETAL	0002F004F	
IR-06	IR06MW45A	MAGNESIUM	336,000		ug/L	TMETAL	0002F004	
IR-06	IR06MW45A	MAGNESIUM	436,000	=	ug/L	DMETAL	0002F004F	
IR-06	IR06MW45A	MANGANESE	351	81,400	ug/L	TMETAL	0002F004	
IR-06	IR06MW45A	MANGANESE	285 –	81,400	ug/L	DMETAL	0002F004F	
IR-06	IR06MW45A	MERCURY	0.13 ND	6	lug/L	TMETAL	0002F004	
IR-06	IR06MW45A	MERCURY	0.15 ND	6	ug/L	DMETAL	0002F004F	
IR-06	IR06MW45A	METHYLENE CHLORIDE	10 ND		ug/L_	VOA	0002F004	ļ
IR-06	IR06MW45A	MOLYBDENUM	4.7 ND		ug/L	TMETAL	0002F004	
IR-06	IR06MW45A	MOLYBDENUM	0.9 ND	-	ug/L	DMETAL	0002F004F	
		MOTOR OIL RANGE ORGANICS	500		ug/L	TPHEXT	0002F004	
		NICKEL	10.9	965	ug/L	TMETAL	0002F004	
		NICKEL	5.7 –	965	ug/L	DMETAL	0002F004F	
		POTASSIUM	84,900	-	ug/L_	TMETAL	0002F004	
		POTASSIUM	108,000		ug/L	DMETAL	0002F004F	
		PROPANE, 2-METHOXY-2-METHYL-	5 ND		ug/L	VOA	0002F004	
	IR06MW45A	SELENIUM	2.5 ND		ug/L	TMETAL	0002F004	<u></u>
	IR06MW45A	SELENIUM	2.5 ND		ug/L	DMETAL	0002F004F	
	IR06MW45A	SILVER	1 ND	74.3	ug/L	TMETAL	0002F004	
_	IR06MW45A	SILVER	3.4	74.3		DMETAL	0002F004F	
	IR06MW45A	SODIUM	2,450,000	-	×	TMETAL	0002F004	
IR-06	IR06MW45A	SODIUM	2,980,000			DMETAL	0002F004F	
IR-06	IR06MW45A	STYRENE	10 ND		ug/L_	VOA	0002F004	
	IR06MW45A	TETRACHLOROETHENE	10 ND	_	ug/L	VOA	0002F004	
IR-06 IR-06	IR06MW45A	THALLIUM	3.2 ND	130		TMETAL	0002F004	
			6.3 ND	130	+	DMETAL	0002F004F	
	IR06MW45A	THALLIUM	10 ND		ug/L	VOA	0002F004	
	IR06MW45A	TOLUENE	10 ND			VOA	0002F004	
IR-06	IR06MW45A	TRANS-1,3-DICHLOROPROPENE	10 ND	2,000	ug/L	VOA	0002F004	
IR-06	IR06MW45A	TRICHLOROETHENE	5 -	2,000	ug/L	TMETAL	0002F004	
IR-06	IR06MW45A	VANADIUM				DMETAL.	0002F004F	
IR-06	IR06MW45A	VANADIUM	6.8 10 ND	55	ug/L	VOA	0002F004	
IR-06	IR06MW45A	VINYL CHLORIDE			ug/L ug/L	VOA	0002F004	
IR-06	IR06MW45A	XYLENE (TOTAL)	10 ND	l <u> </u>	Ind.r	IVOR	100021 004	

IR Site	Monitoring Well ID	Analyte	Analytical Result (ug/L)	Trigger Level (ug/L)	Units	Analytical Group	Sample Number	Associated Sample Number
IR-06	IR06MW45A	ZINC	81.8 -	810	ug/L	TMETAL	0002F004	
IR-06	IR06MW45A	ZINC	146 -	810	ug/L	DMETAL	0002F004F	
IR-07	IR07MW19A	POC MONITORING WE						
IR-07	IR07MW19A	1,1,1-TRICHLOROETHANE	10 ND		ug/L	VOA	0002F002	
IR-07	IR07MW19A	1,1,2,2-TETRACHLOROETHANE	10 ND		ug/L	VOA	0002F002	
IR-07	IR07MW19A	1,1,2-TRICHLOROETHANE	10 ND		ug/L	VOA	0002F002	
IR-07	IR07MW19A	1,1-DICHLOROETHANE	10 ND		ug/L	VOA	0002F002	
IR-07	IR07MW19A	1,1-DICHLOROETHENE	10 ND		ug/L	VOA	0002F002 0002F002	
IR-07	IR07MW19A	1,2-DICHLOROETHANE	10 ND		ug/L	VOA VOA	0002F002	
IR-07	IR07MW19A	1,2-DICHLOROETHENE (TOTAL)	10 ND	22,400	ug/L	VOA	0002F002	
	IR07MW19A	1,2-DICHLOROPROPANE	10 ND		ug/L ug/L	VOA	0002F002	
IR-07	IR07MW19A	2-BUTANONE	10 ND		ug/L	VOA	0002F002	
	IR07MW19A	2-HEXANONE	10 ND		ug/L	VOA	0002F002	
	IR07MW19A	4-METHYL-2-PENTANONE	10 ND		ug/L	VOA	0002F002	
IR-07	IR07MW19A	ACETONE	15.5 ND		ug/L	TMETAL	0002F002	
IR-07	IR07MW19A	ALUMINUM	15.5 ND		ug/L	DMETAL	0002F002F	
	IR07MW19A	ALUMINUM	2.2 ND	500	ug/L	TMETAL	0002F002	
IR-07	IR07MW19A IR07MW19A	ANTIMONY	5 -	500	ug/L	DMETAL	0002F002F	
IR-07 IR-07	IR07MW19A	ARSENIC	2.7 ND	36	ug/L	TMETAL	0002F002	
IR-07	IR07MW19A	ARSENIC	2.5 ND	36	ug/L	DMETAL	0002F002F	
IR-07	IR07MW19A	BARIUM	116 -	504	ug/L	TMETAL	0002F002	
	IR07MW19A	BARIUM	552	504	ug/L	DMETAL	0002F002F	
	IR07MW19A	BENZENE	10 ND		ug/L	VOA	0002F002	
IR-07	IR07MW19A	BERYLLIUM	0.18 ND	1.4	ug/L	TMETAL	0002F002	
IR-07	IR07MW19A	BERYLLIUM	0.21 ND	1.4	ug/L	DMETAL	0002F002F	
IR-07	IR07MW19A	BROMODICHLOROMETHANE	10 ND		ug/L	VOA	0002F002	
IR-07	IR07MW19A	BROMOFORM	10 ND	-	ug/L	VOA	0002F002	
IR-07	IR07MW19A	BROMOMETHANE	10 ND	-	ug/L	VOA	0002F002	
IR-07	IR07MW19A	CADMIUM	1.3 ND	9.3	ug/L	TMETAL	0002F002	
IR-07	IR07MW19A	CADMIUM	1.6 ND	9.3	ug/L	DMETAL	0002F002F	
IR-07	IR07MW19A	CALCIUM	377,000 -		ug/L	TMETAL	0002F002	•
IR-07	IR07MW19A	CALCIUM	380,000		ug/L	DMETAL	0002F002F	
IR-07	IR07MW19A	CARBON DISULFIDE	10 ND		ug/L	VOA	0002F002	
IR-07	IR07MW19A	CARBON TETRACHLORIDE	10 ND		ug/L_	VOA	0002F002	
IR-07	IR07MW19A	CHLOROBENZENE	10 ND		ug/L	VOA	0002F002	
IR-07	IR07MW19A	CHLOROETHANE	10 ND		ug/L	VOA	0002F002	
IR-07	IR07MW19A	CHLOROFORM	10 ND		ug/L	VOA	0002F002	
IR-07	IR07MW19A	CHLOROMETHANE	10 ND		ug/L	VOA	0002F002	
IR-07	IR07MW19A	CHROMIUM	5,9 ND	15.7	ug/L	TMETAL	0002F002	
	IR07MW19A	CHROMIUM	5.6 ND	15.7		CHROM	0002F002F 0002F002	
JR-07	IR07MW19A	CHROMIUM VI	10 ND		ug/L	VOA	0002F002	
IR-07	IR07MW19A	CIS-1,3-DICHLOROPROPENE	10 ND	20.8		TMETAL	0002F002	
IR-07	IR07MW19A	COBALT	1.3 ND		ug/L ug/L	DMETAL	0002F002F	
IR-07	IR07MW19A	COBALT	1.6 ND 1.6 ND	20.8 28	ug/L	TMETAL	0002F002	
IR-07	IR07MW19A	COPPER	8.4	28	ug/L	DMETAL	0002F002F	
IR-07	IR07MW19A	COPPER	10 ND		ug/L	VOA	0002F002	
IR-07	IR07MW19A	DIBROMOCHLOROMETHANE	100 ND	1,250	ug/L	TPHEXT	0002F002	
IR-07	IR07MW19A	DIESEL RANGE ORGANICS	10 ND	- 1,230	ug/L	VOA	0002F002	
IR-07	IR07MW19A	GASOLINE RANGE ORGANICS	50 ND	1,250	ug/L	TPHPRG	0002F002	
IR-07 IR-07	IR07MW19A IR07MW19A	IRON	1,270 -		ug/L	TMETAL	0002F002	
IR-07	IR07MW19A	IRON	1,280		ug/L	DMETAL	0002F002F	
IR-07	IR07MW19A	LEAD	1.3 ND	14.4	ug/L	TMETAL	0002F002	
IR-07	IR07MW19A	LEAD	1.3 ND	14.4	ug/L	DMETAL	0002F002F	
IR-07	IR07MW19A	MAGNESIUM	1,030,000 -		ug/L	TMETAL	0002F002	
IR-07	IR07MW19A	MAGNESIUM	1,060,000	-	ug/L	DMETAL	0002F002F	
IR-07	IR07MW19A	MANGANESE	663	8,140	ug/L	TMETAL	0002F002	ļ
IR-07	IR07MW19A	MANGANESE	660	8,140	ug/L	DMETAL	0002F002F	<u> </u>
IR-07	IR07MW19A	MERCURY	0.1 ND	0.6	ug/L	TMETAL	0002F002	L

IR Site	Monitoring Well ID	Analyte	Analytical Result (ug/L)	Trigger Level (ug/L)	Units	Analytical Group	Sample Number	Associated Sample Number
IR-07	IR07MW19A	MERCURY	0.1 ND	0.6	ug/L	DMETAL	0002F002F	
IR-07	IR07MW19A	METHYLENE CHLORIDE	10 ND		ug/L	VOA	0002F002	
IR-07	IR07MW19A	MOLYBDENUM	7.5		ug/L	TMETAL	0002F002	
IR-07	IR07MW19A	MOLYBDENUM	5.3 ND		ug/L	DMETAL	0002F002F	
IR-07	IR07MW19A	MOTOR OIL RANGE ORGANICS	100 ND		ug/L	TPHEXT	0002F002 0002F002	
IR-07	IR07MW19A	NICKEL	26.1 -	96.5	ug/L	DMETAL	0002F002F	
IR-07	IR07MW19A	NICKEL	27 -	96.5	ug/L		0002F002F	
IR-07	IR07MW19A	POTASSIUM	356,000 -		ug/L ug/L	DMETAL	0002F002F	
IR-07	IR07MW19A	POTASSIUM	367,000		ug/L	VOA	0002F002	
IR-07	IR07MW19A	PROPANE, 2-METHOXY-2-METHYL-	5 ND 2.5 ND		ug/L		0002F002	
IR-07	IR07MW19A	SELENIUM	2.5 ND		ug/L	DMETAL	0002F002F	
IR-07	IR07MW19A	SELENIUM	2.5 ND	7.43	ug/L	TMETAL	0002F002	
IR-07	IR07MW19A	SILVER	3.5 -	7.43	ug/L	DMETAL	0002F002F	
IR-07	IR07MW19A	SILVER	7.000,000 -	2.43	ug/L	TMETAL	0002F002	
IR-07	IR07MW19A	SODIUM	8.090,000		ug/L	DMETAL	0002F002F	
IR-07	IR07MW19A	SODIUM STYRENE	10 ND		ug/L	VOA	0002F002	
IR-07	IR07MW19A		10 ND		ug/L	VOA	0002F002	
IR-07	IR07MW19A	TETRACHLOROETHENE THALLIUM	12.4 ND	13	ug/L	TMETAL	0002F002	
IR-07	IR07MW19A	THALLIUM	12.4 ND	13	ug/L	DMETAL	0002F002F	
IR-07	IR07MW19A IR07MW19A	TOLUENE	10 ND		ug/L	VOA	0002F002	
IR-07	IR07MW19A	TRANS-1,3-DICHLOROPROPENE	10 ND		ug/L	VOA	0002F002	
IR-07	IR07MW19A	TRICHLOROETHENE	10 ND	200	ug/L	VOA	0002F002	
IR-07	IR07MW19A	VANADIUM	2.5	_	ug/L	TMETAL	0002F002	
IR-07	IR07MW19A	VANADIUM	3.8	-	ug/L	DMETAL	0002F002F	
IR-07	IR07MW19A	VINYL CHLORIDE	10 ND	55	ug/L	VOA	0002F002	
IR-07	IR07MW19A	XYLENE (TOTAL)	10 ND		ug/L	VOA	0002F002	
IR-07	IR07MW19A	ZINC	1.9 ND	81	ug/L	TMETAL	0002F002	
IR-07	IR07MW19A	ZINC	134	81	ug/L	DMETAL	0002F002F	
IR-07	IR07MW20A1	POST REMEDIAL ACTION M	ONITORING WELL			ļ <u> </u>		
IR-07		1,1,1-TRICHLOROETHANE	10 ND		ug/L	VOA	0002F014	
IR-07	10071414/2014				+			
		1,1,2,2-TETRACHLOROETHANE	10 ND		ug/L	VOA	0002F014	
IR-07	IR07MW20A1	1,1,2,2-TETRACHLOROETHANE 1,1,2-TRICHLOROETHANE	10 ND 10 ND	-	ug/L ug/L	VOA VOA	0002F014 0002F014	
IR-07 IR-07	IR07MW20A1 IR07MW20A1	1,1,2,2-TETRACHLOROETHANE 1,1,2-TRICHLOROETHANE 1,1-DICHLOROETHANE	10 ND 10 ND 10 ND		ug/L ug/L ug/L	VOA VOA VOA	0002F014 0002F014 0002F014	
	IR07MW20A1 IR07MW20A1 IR07MW20A1	1,1,2,2-TETRACHLOROETHANE 1,1,2-TRICHLOROETHANE 1,1-DICHLOROETHANE 1,1-DICHLOROETHENE	10 ND 10 ND 10 ND 10 ND	-	ug/L ug/L ug/L ug/L	VOA VOA VOA VOA	0002F014 0002F014 0002F014 0002F014	
IR-07	IR07MW20A1 IR07MW20A1 IR07MW20A1 IR07MW20A1	1,1,2,2-TETRACHLOROETHANE 1,1,2-TRICHLOROETHANE 1,1-DICHLOROETHANE 1,1-DICHLOROETHENE 1,2-DICHLOROETHANE	10 ND 10 ND 10 ND 10 ND 10 ND	- - - -	ug/L ug/L ug/L ug/L ug/L	VOA VOA VOA VOA	0002F014 0002F014 0002F014 0002F014 0002F014	
IR-07 IR-07 IR-07 IR-07	IR07MW20A1 IR07MW20A1 IR07MW20A1 IR07MW20A1 IR07MW20A1	1,1,2,2-TETRACHLOROETHANE 1,1,2-TRICHLOROETHANE 1,1-DICHLOROETHANE 1,1-DICHLOROETHENE 1,2-DICHLOROETHANE 1,2-DICHLOROETHENE (TOTAL)	10 ND 10 ND 10 ND 10 ND 10 ND 10 ND	 22,400	ug/L ug/L ug/L ug/L ug/L ug/L	VOA VOA VOA VOA VOA VOA	0002F014 0002F014 0002F014 0002F014 0002F014 0002F014	
IR-07 IR-07 IR-07	IR07MW20A1 IR07MW20A1 IR07MW20A1 IR07MW20A1 IR07MW20A1 IR07MW20A1	1.1.2.2-TETRACHLOROETHANE 1.1.2-TRICHLOROETHANE 1.1-DICHLOROETHANE 1.1-DICHLOROETHENE 1.2-DICHLOROETHANE 1.2-DICHLOROETHENE (TOTAL) 1.2-DICHLOROPROPANE	10 ND 10 ND 10 ND 10 ND 10 ND 10 ND 10 ND	 22,400	ug/L ug/L ug/L ug/L ug/L ug/L	VOA VOA VOA VOA VOA VOA VOA	0002F014 0002F014 0002F014 0002F014 0002F014 0002F014 0002F014	
IR-07 IR-07 IR-07 IR-07 IR-07	IR07MW20A1 IR07MW20A1 IR07MW20A1 IR07MW20A1 IR07MW20A1 IR07MW20A1 IR07MW20A1	1,1,2,2-TETRACHLOROETHANE 1,1,2-TRICHLOROETHANE 1,1-DICHLOROETHANE 1,1-DICHLOROETHENE 1,2-DICHLOROETHANE 1,2-DICHLOROETHENE (TOTAL) 1,2-DICHLOROPROPANE 2-BUTANONE	10 ND	 22,400	ug/L ug/L ug/L ug/L ug/L ug/L ug/L	VOA VOA VOA VOA VOA VOA VOA	0002F014 0002F014 0002F014 0002F014 0002F014 0002F014 0002F014 0002F014	
IR-07 IR-07 IR-07 IR-07 IR-07 IR-07	IR07MW20A1 IR07MW20A1 IR07MW20A1 IR07MW20A1 IR07MW20A1 IR07MW20A1 IR07MW20A1 IR07MW20A1	1,1,2,2-TETRACHLOROETHANE 1,1,2-TRICHLOROETHANE 1,1-DICHLOROETHANE 1,1-DICHLOROETHENE 1,2-DICHLOROETHANE 1,2-DICHLOROETHENE (TOTAL) 1,2-DICHLOROPROPANE 2-BUTANONE 2-HEXANONE	10 ND	- - - - - 22,400	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	VOA	0002F014 0002F014 0002F014 0002F014 0002F014 0002F014 0002F014 0002F014	
IR-07 IR-07 IR-07 IR-07 IR-07 IR-07 IR-07	IR07MW20A1 IR07MW20A1 IR07MW20A1 IR07MW20A1 IR07MW20A1 IR07MW20A1 IR07MW20A1 IR07MW20A1 IR07MW20A1	1,1,2,2-TETRACHLOROETHANE 1,1,2-TRICHLOROETHANE 1,1-DICHLOROETHANE 1,1-DICHLOROETHENE 1,2-DICHLOROETHENE 1,2-DICHLOROETHENE (TOTAL) 1,2-DICHLOROPROPANE 2-BUTANONE 2-HEXANONE 4-METHYL-2-PENTANONE	10 ND	 22,400	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	VOA VOA VOA VOA VOA VOA VOA VOA VOA	0002F014 0002F014 0002F014 0002F014 0002F014 0002F014 0002F014 0002F014 0002F014	
IR-07 IR-07 IR-07 IR-07 IR-07 IR-07 IR-07 IR-07	IR07MW20A1 IR07MW20A1 IR07MW20A1 IR07MW20A1 IR07MW20A1 IR07MW20A1 IR07MW20A1 IR07MW20A1 IR07MW20A1 IR07MW20A1	1,1,2,2-TETRACHLOROETHANE 1,1,2-TRICHLOROETHANE 1,1-DICHLOROETHANE 1,1-DICHLOROETHANE 1,2-DICHLOROETHANE 1,2-DICHLOROETHENE (TOTAL) 1,2-DICHLOROPROPANE 2-BUTANONE 2-HEXANONE 4-METHYL-2-PENTANONE ACETONE	10 ND	 22,400	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	VOA	0002F014 0002F014 0002F014 0002F014 0002F014 0002F014 0002F014 0002F014 0002F014 0002F014	
IR-07 IR-07 IR-07 IR-07 IR-07 IR-07 IR-07 IR-07	IR07MW20A1 IR07MW20A1 IR07MW20A1 IR07MW20A1 IR07MW20A1 IR07MW20A1 IR07MW20A1 IR07MW20A1 IR07MW20A1 IR07MW20A1 IR07MW20A1	1,1,2,2-TETRACHLOROETHANE 1,1,2-TRICHLOROETHANE 1,1-DICHLOROETHANE 1,1-DICHLOROETHANE 1,2-DICHLOROETHANE 1,2-DICHLOROETHENE (TOTAL) 1,2-DICHLOROPROPANE 2-BUTANONE 2-HEXANONE 4-METHYL-2-PENTANONE ALUMINUM	10 ND	 22.400 	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	VOA	0002F014 0002F014 0002F014 0002F014 0002F014 0002F014 0002F014 0002F014 0002F014	
IR-07 IR-07 IR-07 IR-07 IR-07 IR-07 IR-07 IR-07 IR-07 IR-07	IR07MW20A1 IR07MW20A1 IR07MW20A1 IR07MW20A1 IR07MW20A1 IR07MW20A1 IR07MW20A1 IR07MW20A1 IR07MW20A1 IR07MW20A1 IR07MW20A1 IR07MW20A1	1,1,2,2-TETRACHLOROETHANE 1,1,2-TRICHLOROETHANE 1,1-DICHLOROETHANE 1,1-DICHLOROETHANE 1,2-DICHLOROETHANE 1,2-DICHLOROETHENE (TOTAL) 1,2-DICHLOROPROPANE 2-BUTANONE 2-HEXANONE 4-METHYL-2-PENTANONE ACETONE ALUMINUM ANTIMONY	10 ND	 22,400	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	VOA	0002F014 0002F014 0002F014 0002F014 0002F014 0002F014 0002F014 0002F014 0002F014 0002F014 0002F014 0002F014	
IR-07 IR-07 IR-07 IR-07 IR-07 IR-07 IR-07 IR-07 IR-07 IR-07 IR-07	IR07MW20A1 IR07MW20A1 IR07MW20A1 IR07MW20A1 IR07MW20A1 IR07MW20A1 IR07MW20A1 IR07MW20A1 IR07MW20A1 IR07MW20A1 IR07MW20A1 IR07MW20A1	1,1,2,2-TETRACHLOROETHANE 1,1,2-TRICHLOROETHANE 1,1-DICHLOROETHANE 1,1-DICHLOROETHANE 1,2-DICHLOROETHANE 1,2-DICHLOROETHENE (TOTAL) 1,2-DICHLOROPROPANE 2-BUTANONE 2-HEXANONE 4-METHYL-2-PENTANONE ALUMINUM ANTIMONY ARSENIC	10 ND 11 ND 11 ND 12 ND 13 ND 14 ND 15.5 ND 7.2 3.1 ND		ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	VOA	0002F014 0002F014 0002F014 0002F014 0002F014 0002F014 0002F014 0002F014 0002F014 0002F014 0002F014 0002F014 0002F014	
IR-07 IR-07 IR-07 IR-07 IR-07 IR-07 IR-07 IR-07 IR-07 IR-07 IR-07 IR-07	IR07MW20A1 IR07MW20A1 IR07MW20A1 IR07MW20A1 IR07MW20A1 IR07MW20A1 IR07MW20A1 IR07MW20A1 IR07MW20A1 IR07MW20A1 IR07MW20A1 IR07MW20A1 IR07MW20A1 IR07MW20A1	1,1,2,2-TETRACHLOROETHANE 1,1,2-TRICHLOROETHANE 1,1-DICHLOROETHANE 1,1-DICHLOROETHANE 1,2-DICHLOROETHANE 1,2-DICHLOROETHENE (TOTAL) 1,2-DICHLOROPROPANE 2-BUTANONE 2-HEXANONE 4-METHYL-2-PENTANONE ACETONE ALUMINUM ANTIMONY ARSENIC BARIUM	10 ND 11 ND 11 ND 12 ND 13 ND 14 ND 15.5 ND 15.5 ND 15.5 ND 15.5 ND 15.5 ND	 22.400 500	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	VOA	0002F014 0002F014 0002F014 0002F014 0002F014 0002F014 0002F014 0002F014 0002F014 0002F014 0002F014 0002F014 0002F014 0002F014	
IR-07 IR-07 IR-07 IR-07 IR-07 IR-07 IR-07 IR-07 IR-07 IR-07 IR-07 IR-07 IR-07	IR07MW20A1	1,1,2,2-TETRACHLOROETHANE 1,1,2-TRICHLOROETHANE 1,1-DICHLOROETHANE 1,1-DICHLOROETHANE 1,2-DICHLOROETHANE 1,2-DICHLOROETHENE (TOTAL) 1,2-DICHLOROPROPANE 2-BUTANONE 2-HEXANONE 4-METHYL-2-PENTANONE ACETONE ALUMINUM ANTIMONY ARSENIC BARIUM BENZENE	10 ND 11 ND 11 ND 12 ND 13 ND 14 ND 15.5 ND 7.2 3.1 ND		ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	VOA	0002F014 0002F014 0002F014 0002F014 0002F014 0002F014 0002F014 0002F014 0002F014 0002F014 0002F014 0002F014 0002F014 0002F014 0002F014	
IR-07	IR07MW20A1	1,1,2,2-TETRACHLOROETHANE 1,1,2-TRICHLOROETHANE 1,1-DICHLOROETHANE 1,1-DICHLOROETHANE 1,2-DICHLOROETHANE 1,2-DICHLOROETHANE 1,2-DICHLOROPROPANE 2-BUTANONE 2-HEXANONE 4-METHYL-2-PENTANONE ALUMINUM ANTIMONY ARSENIC BARIUM BENZENE BERYLLIUM	10 ND 11 ND 11 ND 12 ND 13 ND 14 ND 15.5 ND		ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	VOA VOA VOA VOA VOA VOA VOA VOA VOA DMETAL DMETAL DMETAL VOA	0002F014 0002F014 0002F014 0002F014 0002F014 0002F014 0002F014 0002F014 0002F014 0002F014 0002F014 0002F014 0002F014 0002F014 0002F014 0002F014	
IR-07	IR07MW20A1	1,1,2,2-TETRACHLOROETHANE 1,1,2-TRICHLOROETHANE 1,1-DICHLOROETHANE 1,1-DICHLOROETHANE 1,2-DICHLOROETHANE 1,2-DICHLOROETHENE (TOTAL) 1,2-DICHLOROPROPANE 2-BUTANONE 2-HEXANONE 4-METHYL-2-PENTANONE ALUMINUM ANTIMONY ARSENIC BARIUM BENZENE BERYLLIUM BROMODICHLOROMETHANE	10 ND		ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	VOA VOA VOA VOA VOA VOA VOA VOA VOA DMETAL DMETAL DMETAL VOA DMETAL DMETAL DMETAL DMETAL DMETAL DMETAL DMETAL	0002F014 0002F014 0002F014 0002F014 0002F014 0002F014 0002F014 0002F014 0002F014 0002F014 0002F014 0002F014 0002F014 0002F014 0002F014 0002F014 0002F014	
IR-07	IR07MW20A1	1,1,2,2-TETRACHLOROETHANE 1,1,2-TRICHLOROETHANE 1,1-DICHLOROETHANE 1,1-DICHLOROETHANE 1,2-DICHLOROETHANE 1,2-DICHLOROETHENE (TOTAL) 1,2-DICHLOROPROPANE 2-BUTANONE 2-HEXANONE 4-METHYL-2-PENTANONE ALUMINUM ANTIMONY ARSENIC BARIUM BENZENE BERYLLIUM BROMODICHLOROMETHANE BROMOFORM	10 ND 11 ND 11 ND 12 ND 13 ND 14 ND 15.5 ND		ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	VOA	0002F014 0002F014 0002F014 0002F014 0002F014 0002F014 0002F014 0002F014 0002F014 0002F014 0002F014 0002F014 0002F014 0002F014 0002F014 0002F014 0002F014 0002F014 0002F014	
IR-07	IR07MW20A1	1,1,2,2-TETRACHLOROETHANE 1,1,2-TRICHLOROETHANE 1,1-DICHLOROETHANE 1,1-DICHLOROETHANE 1,2-DICHLOROETHANE 1,2-DICHLOROETHENE (TOTAL) 1,2-DICHLOROPROPANE 2-BUTANONE 2-HEXANONE 4-METHYL-2-PENTANONE ALUMINUM ANTIMONY ARSENIC BARIUM BENZENE BERYLLIUM BROMODICHLOROMETHANE BROMOFORM BROMOMETHANE	10 ND		ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	VOA	0002F014 0002F014	
IR-07	IR07MW20A1	1,1,2,2-TETRACHLOROETHANE 1,1,2-TRICHLOROETHANE 1,1-DICHLOROETHANE 1,1-DICHLOROETHANE 1,2-DICHLOROETHANE 1,2-DICHLOROETHENE (TOTAL) 1,2-DICHLOROPROPANE 2-BUTANONE 2-HEXANONE 4-METHYL-2-PENTANONE ALUMINUM ANTIMONY ARSENIC BARIUM BENZENE BERYLLIUM BROMODICHLOROMETHANE BROMOFORM BROMOMETHANE CADMIUM	10 ND 11 ND 11 ND 12 ND 13 ND 14 ND 15.5		ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	VOA	0002F014 0002F014	
IR-07	IR07MW20A1	1,1,2,2-TETRACHLOROETHANE 1,1,2-TRICHLOROETHANE 1,1-DICHLOROETHANE 1,1-DICHLOROETHANE 1,2-DICHLOROETHANE 1,2-DICHLOROETHENE (TOTAL) 1,2-DICHLOROPROPANE 2-BUTANONE 2-HEXANONE 4-METHYL-2-PENTANONE ALUMINUM ANTIMONY ARSENIC BARIUM BENZENE BERYLLIUM BROMODICHLOROMETHANE BROMOFORM BROMOMETHANE CADMIUM CALCIUM	10 ND		ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	VOA	0002F014 0002F014	
IR-07	IRO7MW20A1	1,1,2,2-TETRACHLOROETHANE 1,1,2-TRICHLOROETHANE 1,1-DICHLOROETHANE 1,1-DICHLOROETHANE 1,2-DICHLOROETHANE 1,2-DICHLOROETHANE 1,2-DICHLOROPROPANE 2-BUTANONE 2-HEXANONE 4-METHYL-2-PENTANONE ACETONE ALUMINUM ANTIMONY ARSENIC BARIUM BENZENE BERYLLIUM BROMODICHLOROMETHANE BROMOFORM BROMOMETHANE CADMIUM CALCIUM CARBON DISULFIDE	10 ND 11 ND 11 ND 12 ND 13 ND 14 ND 15.5 ND		ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	VOA	0002F014 0002F014	
IR-07	IRO7MW20A1	1,1,2,2-TETRACHLOROETHANE 1,1,2-TRICHLOROETHANE 1,1-DICHLOROETHANE 1,1-DICHLOROETHANE 1,2-DICHLOROETHANE 1,2-DICHLOROETHENE 1,2-DICHLOROPROPANE 2-BUTANONE 2-HEXANONE 4-METHYL-2-PENTANONE ACETONE ALUMINUM ANTIMONY ARSENIC BARIUM BENZENE BERYLLIUM BROMODICHLOROMETHANE BROMOFORM BROMOMETHANE CADMIUM CALCIUM CARBON DISULFIDE CARBON TETRACHLORIDE	10 ND 11 ND 11 ND 11 ND 12 ND 13 ND 14 ND 15.5 ND 15		ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	VOA	0002F014 0002F014	
IR-07	IR07MW20A1	1,1,2,2-TETRACHLOROETHANE 1,1,2-TRICHLOROETHANE 1,1-DICHLOROETHANE 1,1-DICHLOROETHANE 1,2-DICHLOROETHANE 1,2-DICHLOROETHANE 1,2-DICHLOROPROPANE 2-BUTANONE 2-HEXANONE 4-METHYL-2-PENTANONE ACETONE ALUMINUM ANTIMONY ARSENIC BARIUM BENZENE BERYLLIUM BROMODICHLOROMETHANE BROMOFORM BROMOMETHANE CADMIUM CALCIUM CARBON DISULFIDE CARBON TETRACHLORIDE CHLOROBENZENE	10 ND 11 ND 11 ND 12 ND 13 ND 15.5 ND 15.5 ND 1635 10 ND 11 ND		ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	VOA	0002F014 0002F014	
IR-07	IRO7MW20A1	1,1,2,2-TETRACHLOROETHANE 1,1,2-TRICHLOROETHANE 1,1-DICHLOROETHANE 1,1-DICHLOROETHANE 1,2-DICHLOROETHANE 1,2-DICHLOROETHENE 1,2-DICHLOROPROPANE 2-BUTANONE 2-HEXANONE 4-METHYL-2-PENTANONE ACETONE ALUMINUM ANTIMONY ARSENIC BARIUM BENZENE BERYLLIUM BROMODICHLOROMETHANE BROMOFORM BROMOMETHANE CADMIUM CALCIUM CARBON DISULFIDE CARBON TETRACHLORIDE CHLOROBENZENE CHLOROETHANE	10 ND 11 ND 11 ND 12 ND 13 ND 14 ND 15.5 N		ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	VOA	0002F014 0002F014	
IR-07	IR07MW20A1	1,1,2,2-TETRACHLOROETHANE 1,1,2-TRICHLOROETHANE 1,1-DICHLOROETHANE 1,1-DICHLOROETHANE 1,2-DICHLOROETHANE 1,2-DICHLOROETHANE 1,2-DICHLOROPROPANE 2-BUTANONE 2-HEXANONE 4-METHYL-2-PENTANONE ACETONE ALUMINUM ANTIMONY ARSENIC BARIUM BENZENE BERYLLIUM BROMODICHLOROMETHANE BROMOFORM BROMOMETHANE CADMIUM CALCIUM CARBON DISULFIDE CARBON TETRACHLORIDE CHLOROBENZENE	10 ND 11 ND 11 ND 12 ND 13 ND 14 ND 15.5 N		ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	VOA	0002F014 0002F014	

IR Site	Monitoring Well ID	Analyte	Analytical Result (ug/L)	Trigger Level (ug/L)	Units	Analytical Group	Sample Number 0002F014	Associated Sample Number
IR-07		CHROMIUM VI	10 ND		ug/L	CHROM VOA	0002F014 0002F014	
IR-07		CIS-1,3-DICHLOROPROPENE	10 ND		ug/L ug/L	DMETAL	0002F014	
IR-07		COBALT	1.3 ND 6.1 ND	20.8 28	ug/L	DMETAL	0002F014	
IR-07	IR07MW20A1		6.1 ND 10 ND		ug/L	VOA	0002F014	
IR-07		DIBROMOCHLOROMETHANE DIESEL RANGE ORGANICS	100 ND	1,250	ug/L	TPHEXT	0002F014	
IR-07 IR-07		ETHYLBENZENE	10 ND		ug/L	VOA	0002F014	
IR-07		GASOLINE RANGE ORGANICS	50 ND	1,250	ug/L	TPHPRG	0002F014	
IR-07		IRON	20.3 ND		ug/L	DMETAL	0002F014	
IR-07	IR07MW20A1		1.3 ND	14.4	ug/L	DMETAL	0002F014	
IR-07	IR07MW20A1		1,080,000 -		ug/L	DMETAL	0002F014	
IR-07		MANGANESE	727	8,140	ug/L	DMETAL	0002F014	
IR-07	IR07MW20A1		0.1 ND	0.6	ug/L	DMETAL	0002F014	
IR-07	IR07MW20A1	METHYLENE CHLORIDE	10 ND		ug/L	VOA	0002F014	
IR-07		MOLYBDENUM	8.5 ND	-	ug/L	DMETAL	0002F014	
IR-07	IR07MW20A1	MOTOR OIL RANGE ORGANICS	100 ND		ug/L	TPHEXT	0002F014	
IR-07	IR07MW20A1	NICKEL	42.5 -	96.5	ug/L	DMETAL	0002F014	
IR-07	IR07MW20A1	POTASSIUM	384,000		ug/L	DMETAL_	0002F014	
IR-07	IR07MW20A1	PROPANE, 2-METHOXY-2-METHYL-	5 ND		ug/L	VOA	0002F014	
IR-07	IR07MW20A1	SELENIUM	2.2 ND		ug/L	DMETAL	0002F014	
IR-07	IR07MW20A1	SILVER	1.4 ND	7.43	ug/L	DMETAL	0002F014	
IR-07	IR07MW20A1		8,610,000		ug/L	DMETAL	0002F014	
IR-07	IR07MW20A1		10 ND		ug/L	VOA	0002F014 0002F014	
IR-07		TETRACHLOROETHENE	10 ND		ug/L	VOA DMETAL	0002F014	
IR-07	IR07MW20A1		11.5	13 	ug/L ug/L	VOA	0002F014	
IR-07	IR07MW20A1		10 ND		ug/L	VOA	0002F014	
IR-07		TRANS-1,3-DICHLOROPROPENE	10 ND	200	ug/L	VOA	0002F014	
IR-07		TRICHLOROETHENE	1.8 ND		ug/L	DMETAL	0002F014	
IR-07	IR07MW20A1	VINYL CHLORIDE	10 ND	55	ug/L	VOA	0002F014	
IR-07 IR-07		XYLENE (TOTAL)	10 ND		ug/L	VOA	0002F014	
IR-07	IR07MW20A1		204	81	ug/L	DMETAL	0002F014	
IR-07	IR07MW21A1	POST REMEDIAL ACTION MONIT	ORING WELL					
IR-07		1,1,1-TRICHLOROETHANE	10 ND	-	ug/L	VOA	0002F016	
		1,1,2,2-TETRACHLOROETHANE	10 ND	•	ug/L	VOA	0002F016	
IR-07		1,1,2-TRICHLOROETHANE	10 ND		ug/L	VOA	0002F016	
IR-07	IR07MW21A1	1,1-DICHLOROETHANE	10 ND		ug/L	VOA	0002F016	
IR-07	IR07MW21A1	1,1-DICHLOROETHENE	10 ND		ug/L	VOA	0002F016	
IR-07	IR07MW21A1	1,2-DICHLOROETHANE	10 ND		ug/L	VOA	0002F016	
		1,2-DICHLOROETHENE (TOTAL)	10 ND	22,400		VOA	0002F016	
IR-07		1,2-DICHLOROPROPANE	10 ND		ug/L		0002F016	
IR-07		2-BUTANONE	10 ND		ug/L	VOA VOA	0002F016 0002F016	
IR-07		2-HEXANONE	10 ND		ug/L ug/L	VOA	0002F016	
IR-07		4-METHYL-2-PENTANONE	10 ND		ug/L	VOA	0002F016	
IR-07	IR07MW21A1		15.5 ND	-		DMETAL	0002F016	
IR-07	IR07MW21A1		8.7 -	500	ug/L	DMETAL	0002F016	
IR-07	IR07MW21A1 IR07MW21A1		3.7 ND	36		DMETAL	0002F016	
IR-07	IR07MW21A1		720	504		DMETAL	0002F016	
IR-07	IR07MW21A1		10 ND	-	ug/L	VOA	0002F016	
IR-07	IR07MW21A1		0.1 ND	1.4	ug/L	DMETAL	0002F016	
IR-07		BROMODICHLOROMETHANE	10 ND		ug/L	VOA	0002F016	
IR-07		BROMOFORM	10 ND		ug/L	VOA	0002F016	
IR-07		BROMOMETHANE	10 ND			VOA	0002F016	
IR-07	IR07MW21A1		0.2 ND	9.3		DMETAL	0002F016	
IR-07	IR07MW21A1	CALCIUM	99,400		ug/L	DMETAL	0002F016	
IR-07		CARBON DISULFIDE	10 ND	<u> </u>	ug/L	VOA	0002F016	
IR-07		CARBON TETRACHLORIDE	10 ND	-	ug/L	VOA	0002F016	<u> </u>
	LOCALDINA	CHLOROBENZENE	10 ND		ug/L	VOA	0002F016	<u> </u>
IR-07		CHLOROETHANE	10 ND		ug/L	VOA	0002F016	1

IR Site	Monitoring Well ID	Analyte	Analytical Result (ug/L)	Trigger Level (ug/L)	Units	Analytical Group	Sample Number	Associated Sample Number
IR-07		CHLOROFORM	10 ND		ug/L	VOA	0002F016	
IR-07		CHLOROMETHANE	10 ND	45.7	ug/L	VOA DMETAL	0002F016 0002F016	
IR-07		CHROMIUM	1 ND 10 ND	15.7	ug/L ug/L	CHROM	0002F016	<u> </u>
IR-07		CHROMIUM VI	10 ND 10 ND	-	ug/L	VOA	0002F016	
IR-07		CIS-1,3-DICHLOROPROPENE	2 -	20.8	ug/L		0002F016	
IR-07	IR07MW21A1 IR07MW21A1		1,9 ND	28	ug/L	DMETAL	0002F016	
		DIBROMOCHLOROMETHANE	1.9 ND		ug/L	VOA	0002F016	
IR-07 IR-07		DIESEL RANGE ORGANICS	100 ND	1,250	ug/L		0002F016	
IR-07		ETHYLBENZENE	10 ND		ug/L	VOA	0002F016	
IR-07		GASOLINE RANGE ORGANICS	50 ND	1,250	ug/L	TPHPRG	0002F016	
IR-07	IR07MW21A1		148 ND	-	ug/L		0002F016	
IR-07	IR07MW21A1		1.3 ND	14.4	ug/L	DMETAL	0002F016	
IR-07		MAGNESIUM	141,000 -	-	ug/L	DMETAL	0002F016	
IR-07		MANGANESE	558	8,140	ug/L	DMETAL	0002F016	
IR-07	IR07MW21A1		0.1 ND	0.6	ug/L	DMETAL	0002F016	
IR-07		METHYLENE CHLORIDE	10 ND		ug/L	VOA	0002F016	
		MOLYBDENUM	2 ND		ug/L		0002F016	
IR-07		MOTOR OIL RANGE ORGANICS	100 ND		ug/L	TPHEXT	0002F016	<u> </u>
IR-07	IR07MW21A1	NICKEL	22.4	96.5	ug/L	DMETAL	0002F016	
IR-07	IR07MW21A1		15,400		ug/L	DMETAL	0002F016	ļ
IR-07	IR07MW21A1	PROPANE, 2-METHOXY-2-METHYL-	5 ND		ug/L	VOA	0002F016	
IR-07	IR07MW21A1	SELENIUM	2.2 ND		ug/L	DMETAL	0002F016	
IR-07	IR07MW21A1	SILVER	1.3 ND	7.43	ug/L	DMETAL	0002F016	
IR-07	IR07MW21A1	SODIUM	180,000		ug/L	DMETAL	0002F016	
IR-07		STYRENE	10 ND		ug/L	VOA	0002F016	
IR-07		TETRACHLOROETHENE	10 ND		ug/L	VOA	0002F016 0002F016	
	IR07MW21A1		3.2 ND	13	ug/L	DMETAL VOA	0002F016	
IR-07		TOLUENE	10 ND		ug/L	VOA	0002F016	
IR-07		TRANS-1,3-DICHLOROPROPENE	10 ND	200	ug/L ug/L	VOA	0002F016	
IR-07		TRICHLOROETHENE	10 ND 1.8 ND	-	ug/L	DMETAL	0002F016	<u> </u>
IR-07		VANADIUM	1.8 ND	55	ug/L	VOA	0002F016	
IR-07		VINYL CHLORIDE	10 ND	-	ug/L	VOA	0002F016	
IR-07		XYLENE (TOTAL)	184 -	81	ug/L	DMETAL	0002F016	
IR-07		ZINC SENTINEL MONITORING V			Ug. I			
IR-07	IR07MW23A	1,1,1-TRICHLOROETHANE	10 ND		ug/L	VOA	0002F022	
IR-07 IR-07	IR07MW23A	1,1,2,2-TETRACHLOROETHANE	10 ND	-	ug/L	VOA	0002F022	
IR-07	IR07MW23A	1,1,2-TRICHLOROETHANE	10 ND		ug/L	VOA	0002F022	
		1,1-DICHLOROETHANE	10 ND	-	ug/L	VOA	0002F022	
		1,1-DICHLOROETHENE	10 ND		ug/L	VOA	0002F022	
IR-07		1,2-DICHLOROETHANE	10 ND		ug/L	VOA	0002F022	
IR-07		1,2-DICHLOROETHENE (TOTAL)	10 ND	224,000	ug/L	VOA	0002F022	
IR-07		1,2-DICHLOROPROPANE	10 ND		ug/L	VOA	0002F022	
IR-07	 	2-BUTANONE	10 ND		ug/L	AOV	0002F022	
IR-07	IR07MW23A	2-HEXANONE	10 ND		ug/L	VOA	0002F022	ļ
IR-07	IR07MW23A	4-METHYL-2-PENTANONE	10 ND	-	ug/L	VOA	0002F022	
IR-07	IR07MW23A	ACETONE	10 ND		ug/L	VOA	0002F022	-
IR-07	IR07MW23A	ALUMINUM	15.5 ND		ug/L	DMETAL	0002F022	
IR-07	IR07MW23A	ANTIMONY	3.4	5,000	ug/L	DMETAL	0002F022	
IR-07	IR07MW23A	ARSENIC	2.8 ND	360	ug/L	DMETAL	0002F022	
IR-07	IR07MW23A	BARIUM	693 -	5,040	lug/L	DMETAL	0002F022	-
IR-07	IR07MW23A	BENZENE	10 ND		ug/L	VOA	0002F022	1
IR-07	IR07MW23A	BERYLLIUM	0.54 ND	14	ug/L	DMETAL	0002F022	
IR-07	IR07MW23A	BROMODICHLOROMETHANE	10 ND		ug/L	VOA	0002F022	-
IR-07	IR07MW23A	BROMOFORM	10 ND		ug/L	VOA	0002F022 0002F022	+
IR-07	IR07MW23A	BROMOMETHANE	10 ND		ug/L	VOA	0002F022	+
IR-07	IR07MW23A	CADMIUM	0.2 ND	93	ug/L	DMETAL DMETAL	0002F022	+
IR-07	IR07MW23A	CALCIUM	86.900		ug/L	VOA	0002F022	+
IR-07	IR07MW23A	CARBON DISULFIDE	10 ND		ug/L	1407	100021 022	

IR Site	Monitoring Well ID	Analyte	Analytical Result (ug/L)	Trigger Level (ug/L)	Units	Analytical Group	Sample Number	Associated Sample Number
IR-07	IR07MW23A	CARBON TETRACHLORIDE	10 ND		ug/L	VOA	0002F022	
IR-07	IR07MW23A	CHLOROBENZENE	10 ND		ug/L	VOA	0002F022	
IR-07	IR07MW23A	CHLOROETHANE	10 ND		ug/L	VOA	0002F022	
IR-07	IR07MW23A	CHLOROFORM	10 ND		ug/L	VOA	0002F022	
IR-07	IR07MW23A	CHLOROMETHANE	10 ND		ug/L	VOA	0002F022	
IR-07	IR07MW23A	CHROMIUM	1 ND	157	ug/L	DMETAL	0002F022	}
IR-07	IR07MW23A	CHROMIUM VI	10 ND		ug/L	CHROM VOA	0002F022 0002F022	
IR-07	IR07MW23A	CIS-1,3-DICHLOROPROPENE	10 ND	208	ug/L ug/L	DMETAL	0002F022	
IR-07	IR07MW23A	COBALT	6.6	280		DMETAL	0002F022	
IR-07	IR07MW23A	COPPER	1.9 ND 10 ND	280	ug/L ug/L	VOA	0002F022	
IR-07		DIBROMOCHLOROMETHANE	100 ND	1,250	ug/L	TPHEXT	0002F022	
IR-07		DIESEL RANGE ORGANICS	100 ND		ug/L	VOA	0002F022	
IR-07	IR07MW23A	ETHYLBENZENE	50 ND	1,250	ug/L	TPHPRG	0002F022	
_	IR07MW23A	GASOLINE RANGE ORGANICS	403 -	1,230	ug/L	DMETAL	0002F022	
	IR07MW23A	IRON LEAD	1.3 ND	144	ug/L	DMETAL	0002F022	
IR-07	IR07MW23A		113,000 -	- 144	ug/L	DMETAL	0002F022	
IR-07		MAGNESIUM	2,020 -	81,400	ug/L	DMETAL	0002F022	
IR-07	IR07MW23A	MANGANESE	0.1 ND	6		DMETAL	0002F022	
IR-07		MERCURY	10 ND	-	ug/L	VOA	0002F022	
IR-07		METHYLENE CHLORIDE	3.2 ND		ug/L	DMETAL	0002F022	<u> </u>
IR-07		MOLYBDENUM	100 ND		ug/L	TPHEXT	0002F022	
IR-07		MOTOR OIL RANGE ORGANICS	33.9	965	ug/L	DMETAL	0002F022	
IR-07	IR07MW23A	NICKEL	11,000 -	900		DMETAL	0002F022	
IR-07		POTASSIUM	5 ND		ug/L	VOA	0002F022	
IR-07		PROPANE, 2-METHOXY-2-METHYL-	2.2 ND			DMETAL	0002F022	
IR-07	IR07MW23A	SELENIUM	1.3 ND	74.3	ug/L	DMETAL	0002F022	1
IR-07	IR07MW23A	SILVER	109,000 -		ug/L	DMETAL	0002F022	
IR-07 IR-07	IR07MW23A	SODIUM STYRENE	10 ND		ug/L	VOA	0002F022	
	IR07MW23A	TETRACHLOROETHENE	10 ND		ug/L	VOA	0002F022	
IR-07 IR-07	IR07MW23A	THALLIUM	3.2 ND	130	ug/L	DMETAL	0002F022	
IR-07	IR07MW23A	TOLUENE	10 ND		ug/L	VOA	0002F022	
IR-07	IR07MW23A	TRANS-1,3-DICHLOROPROPENE	10 ND	_	ug/L	VOA	0002F022	
IR-07	IR07MW23A	TRICHLOROETHENE	10 ND	2,000	ug/L	VOA	0002F022	
IR-07	IR07MW23A	VANADIUM	1.8 ND		+	DMETAL	0002F022	
IR-07	IR07MW23A	VINYL CHLORIDE	10 ND	55	ug/L	VOA	0002F022	
IR-07	IR07MW23A	XYLENE (TOTAL)	10 ND		ug/L	VOA	0002F022	
IR-07	IR07MW23A	ZINC	203 -	810	ug/L	DMETAL	0002F022	
	IR07MW24A	POST REMEDIAL ACTION MONITO	RING WELL					
		1,1,1-TRICHLOROETHANE	10 ND		ug/L	VOA	0002P011	
		1,1,2,2-TETRACHLOROETHANE	10 ND	-	ug/L	VOA	0002P011	
IR-07	IR07MW24A	1,1,2-TRICHLOROETHANE	10 ND		ug/L	VOA	0002P011	
IR-07		1,1-DICHLOROETHANE	10 ND		ug/L	VOA	0002P011	
IR-07		1,1-DICHLOROETHENE	10 ND		ug/L	VOA	0002P011	<u> </u>
IR-07	IR07MW24A	1,2-DICHLOROETHANE	10 ND	-	ug/L	VOA	0002P011	
IR-07	IR07MW24A	1,2-DICHLOROETHENE (TOTAL)	10 ND	22,400	ug/L	VOA	0002P011	
IR-07	IR07MW24A	1,2-DICHLOROPROPANE	10 ND	-	ug/L	VOA	0002P011	
IR-07	IR07MW24A	2-BUTANONE	10 ND	-	ug/L	VOA	0002P011	
IR-07	IR07MW24A	2-HEXANONE	10 ND		ug/L	VOA	0002P011	<u> </u>
IR-07	IR07MW24A	4-METHYL-2-PENTANONE	10 ND		ug/L	VOA	0002P011	
IR-07	IR07MW24A	ACETONE	10 ND		ug/L	VOA	0002P011	
IR-07	IR07MW24A	ALUMINUM	15.5 ND		+	DMETAL	0002P011	ļ
IR-07	IR07MW24A	ANTIMONY	6.1	500		DMETAL	0002P011	
IR-07	IR07MW24A	ARSENIC	4.4 ND	36	ug/L	DMETAL	0002P011	
IR-07	IR07MW24A	BARIUM	679	504		DMETAL	0002P011	<u> </u>
IR-07	IR07MW24A	BENZENE	10 ND	-	ug/L	VOA	0002P011	
IR-07	IR07MW24A	BERYLLIUM	0.53 ND	1.4		DMETAL	0002P011	
IR-07	IR07MW24A	BROMODICHLOROMETHANE	10 ND		ug/L	VOA	0002P011	
IR-07	IR07MW24A	BROMOFORM	10 ND		ug/L	VOA	0002P011	
IR-07	IR07MW24A	BROMOMETHANE	10 ND		lug/L	VOA	0002P011	<u></u>

IR Site	Monitoring Well ID	Analyte	Analytical Result (ug/L)	Trigger Level (ug/L)	Units		Sample Number	Associated Sample Number
IR-07	IR07MW24A	CADMIUM	0.2 ND	9.3	ug/L	DMETAL	0002P011	
_	IR07MW24A	CALCIUM	117,000		ug/L	DMETAL	0002P011	
IR-07	IR07MW24A	CARBON DISULFIDE	10 ND		ug/L	VOA	0002P011	
IR-07	IR07MW24A	CARBON TETRACHLORIDE	10 ND		ug/L	VOA VOA	0002P011 0002P011	
	IR07MW24A	CHLOROBENZENE	10 ND		ug/L	VOA	0002P011	
IR-07	IR07MW24A	CHLOROETHANE	10 ND		ug/L ug/L	VOA	0002P011	
	IR07MW24A	CHLOROFORM	10 ND 10 ND		ug/L	VOA	0002P011	
	IR07MW24A	CHLOROMETHANE	1 ND	15.7	ug/L	DMETAL	0002P011	
	IR07MW24A	CHROMIUM VI	10 ND	13.7	ug/L	CHROM	0002P011	
	IR07MW24A		10 ND		ug/L	VOA	0002P011	
	IR07MW24A	CIS-1,3-DICHLOROPROPENE	5.8 -	20.8	ug/L	DMETAL	0002P011	
	IR07MW24A	COBALT COPPER	1.9 ND	28	ug/L	DMETAL	0002P011	
	IR07MW24A IR07MW24A	DIBROMOCHLOROMETHANE	10 ND		ug/L	VOA	0002P011	
	IR07MW24A	DIESEL RANGE ORGANICS	100 ND	1,250	ug/L	TPHEXT	0002P011	
	IR07MW24A	ETHYLBENZENE	10 ND		ug/L	VOA	0002P011	
IR-07	IR07MW24A	GASOLINE RANGE ORGANICS	50 ND	1,250		TPHPRG	0002P011	
	IR07MW24A	IRON	71.3 -		ug/L	DMETAL	0002P011	
IR-07	IR07MW24A	LEAD	1.3 ND	14.4	_	DMETAL	0002P011	
	IR07MW24A	MAGNESIUM	102,000 -		ug/L	DMETAL	0002P011	
		MANGANESE	1,880	8,140	ug/L	DMETAL	0002P011	
IR-07	IR07MW24A	MERCURY	0.1 ND	0.6	ug/L	DMETAL	0002P011	
		METHYLENE CHLORIDE	10 ND		ug/L	VOA	0002P011	
_		MOLYBDENUM	2.5 ND	-	ug/L	DMETAL	0002P011	
	IR07MW24A	MOTOR OIL RANGE ORGANICS	200 ND		ug/L	TPHEXT	0002P011	
IR-07	IR07MW24A	NICKEL	35.3	96.5	ug/L	DMETAL	0002P011	
IR-07	IR07MW24A	POTASSIUM	16,800		ug/L	DMETAL	0002P011	
IR-07	IR07MW24A	PROPANE, 2-METHOXY-2-METHYL-	5 ND			VOA	0002P011	
IR-07	IR07MW24A	SELENIUM	2.2 ND			DMETAL_	0002P011	
IR-07	IR07MW24A	SILVER	1.3 ND	7.43		DMETAL	0002P011	
IR-07	IR07MW24A	SODIUM	169,000			DMETAL	0002P011	
	IR07MW24A	STYRENE	10 ND		ug/L	VOA	0002P011	
	IR07MW24A	TETRACHLOROETHENE	10 ND		ug/L	VOA	0002P011	
	IR07MW24A	THALLIUM	3.2 ND	13		DMETAL	0002P011 0002P011	
	IR07MW24A	TOLUENE	0.9		ug/L	VOA VOA	0002P011	
	IR07MW24A	TRANS-1,3-DICHLOROPROPENE	10 ND		ug/L	VOA	0002P011	
	IR07MW24A	TRICHLOROETHENE	10 ND	200	ug/L ug/L	DMETAL	0002P011	
IR-07	IR07MW24A	VANADIUM	1.8 ND 10 ND	55	ug/L	VOA	0002P011	
		VINYL CHLORIDE	10 ND		_	VOA	0002P011	
		XYLENE (TOTAL)	156 -	81			0002P011	
_	IR07MW24A	ZINC POST REMEDIAL ACTION MONITO			ug. L	D.I.I.Z 17 1.Z		!
	IR07MW25A	1.1.1-TRICHLOROETHANE	10 ND		ug/L	VOA	0002P012	
	IR07MW25A	1,1,2,2-TETRACHLOROETHANE	. 10 ND			VOA	0002P012	
	IR07MW25A	1,1,2-TRICHLOROETHANE	10 ND			VOA	0002P012	
	IR07MW25A	1,1-DICHLOROETHANE	10 ND			VOA	0002P012	
	IR07MW25A	1,1-DICHLOROETHENE	10 ND	-	_	VOA	0002P012	
	IR07MW25A	1,2-DICHLOROETHANE	10 ND			VOA	0002P012	
	IR07MW25A	1,2-DICHLOROETHENE (TOTAL)	10 ND	22,400	ug/L	VOA	0002P012	
	IR07MW25A	1.2-DICHLOROPROPANE	10 ND	-	_	VOA	0002P012	
	IR07MW25A	2-BUTANONE	10 ND		ug/L	VOA	0002P012	
	IR07MW25A	2-HEXANONE	10 ND			VOA	0002P012	
		4-METHYL-2-PENTANONE	10 ND			VOA	0002P012	<u> </u>
		ACETONE	10 ND		ug/L	VOA	0002P012	
	IR07MW25A	ALUMINUM	15.5 ND			DMETAL	0002P012	
	IR07MW25A	ANTIMONY	2.9	500		DMETAL	0002P012	
IR-07	IR07MW25A	ARSENIC	2.5 ND	36	 _	DMETAL	0002P012	
IR-07	IR07MW25A	BARIUM	264	504	ug/L	DMETAL	0002P012	
IR-07	IR07MW25A	BENZENE	10 ND		ug/L	VOA	0002P012	
IR-07	IR07MW25A	BERYLLIUM	0.17 ND	1.4	ug/L	DMETAL	0002P012	

IR Site	Monitoring Well ID	Analyte	Analytical Result (ug/L)	Trigger Level (ug/L)	Units		Number	Associated Sample Number
IR-07	IR07MW25A	BROMODICHLOROMETHANE	10_ND		ug/L	VOA	0002P012	ļ
IR-07	IR07MW25A	BROMOFORM	10 ND		ug/L	VOA	0002P012	ļ
IR-07	IR07MW25A	BROMOMETHANE	10 ND		ug/L	VOA	0002P012	ļ
IR-07	IR07MW25A	CADMIUM	0.2 ND	9.3	ug/L	DMETAL	0002P012	
IR-07	IR07MW25A	CALCIUM	173,000 —		ug/L	DMETAL	0002P012	
IR-07	IR07MW25A	CARBON DISULFIDE	10 ND		ug/L	VOA	0002P012	
IR-07	IR07MW25A	CARBON TETRACHLORIDE	10 ND		ug/L	VOA	0002P012	
IR-07	IR07MW25A	CHLOROBENZENE	10 ND		ug/L	VOA	0002P012	
IR-07	IR07MW25A	CHLOROETHANE	10 ND		ug/L	VOA	0002P012	
IR-07	IR07MW25A	CHLOROFORM	10 ND		lug/L	VOA	0002P012	
IR-07	IR07MW25A	CHLOROMETHANE	10 ND		ug/L	VOA	0002P012 0002P012	
IR-07	IR07MW25A	CHROMIUM	1 ND	15.7	ug/L	DMETAL	0002P012	
IR-07	IR07MW25A	CHROMIUM VI	10 ND		ug/L	CHROM		
	IR07MW25A	CIS-1,3-DICHLOROPROPENE	10 ND		ug/L	VOA	0002P012	
IR-07	IR07MW25A	COBALT	1.3 ND	20.8	ug/L	DMETAL	0002P012	
	IR07MW25A	COPPER	4.5 ND	28	ug/L	DMETAL	0002P012	
	IR07MW25A	DIBROMOCHLOROMETHANE	10 ND	1.050	ug/L	VOA TPHEXT	0002P012 0002P012	
	IR07MW25A	DIESEL RANGE ORGANICS	100 ND	1,250	ug/L			
IR-07	IR07MW25A	ETHYLBENZENE	10 ND		ug/L	VOA	0002P012	
IR-07	IR07MW25A	GASOLINE RANGE ORGANICS	50 ND	1,250	ug/L		0002P012	
IR-07	IR07MW25A	IRON	23.6		ug/L	DMETAL	0002P012	
IR-07	IR07MW25A	LEAD	1.3 ND	14.4	ug/L	DMETAL	0002P012	
IR-07	IR07MW25A	MAGNESIUM	63,400		ug/L	DMETAL	0002P012 0002P012	
IR-07	IR07MW25A	MANGANESE	636	8,140	ug/L	DMETAL		
IR-07	IR07MW25A	MERCURY	0.1 ND	0.6	ug/L	DMETAL	0002P012	
IR-07	IR07MW25A	METHYLENE CHLORIDE	10 ND		ug/L	VOA	0002P012	
IR-07	IR07MW25A	MOLYBDENUM	3.2 ND		ug/L	DMETAL	0002P012	
IR-07	IR07MW25A	MOTOR OIL RANGE ORGANICS	400		ug/L	TPHEXT	0002P012	
JR-07	IR07MW25A	NICKEL	3.5	96.5	ug/L	DMETAL	0002P012 0002P012	
IR-07	IR07MW25A	POTASSIUM	14,500 -		ug/L	DMETAL	0002P012	
IR-07	IR07MW25A	PROPANE, 2-METHOXY-2-METHYL-	5 ND		ug/L	DMETAL	0002P012	
IR-07	IR07MW25A	SELENIUM	2.2 ND	7.40	ug/L	DMETAL	0002P012	
IR-07	IR07MW25A	SILVER	1.3 ND	7.43	ug/L	DMETAL	0002P012	
IR-07	IR07MW25A	SODIUM	94,000 -		ug/L	VOA	0002P012	
IR-07	IR07MW25A	STYRENE	10 ND	<u> </u>	ug/L ug/L	VOA	0002P012	
IR-07	IR07MW25A	TETRACHLOROETHENE	10 ND		+	DMETAL	0002F012	
IR-07	IR07MW25A	THALLIUM	3.2 ND	13	ug/L ug/L	VOA	0002P012	
IR-07	IR07MW25A	TOLUENE	10 ND		ug/L	VOA	0002P012	
	IR07MW25A	TRANS-1,3-DICHLOROPROPENE	10 ND	200	ug/L ug/L	VOA	0002F012	
		TRICHLOROETHENE	2 -				0002P012	
		VANADIUM	10 ND	55	ug/L	VOA	0002P012	
IR-07	IR07MW25A	VINYL CHLORIDE	10 ND	- 55	ug/L	VOA	0002P012	
IR-07	IR07MW25A	XYLENE (TOTAL)	36.4 -	81	ug/L	DMETAL	0002P012	
IR-07	IR07MW25A	POST REMEDIAL ACTION MONITO			109.5			
IR-07	IR07MW26A	1.1.1-TRICHLOROETHANE	10 ND		ug/L	VOA	0002P014	
IR-07		 	10 ND		ug/L	VOA	0002P014	
IR-07	IR07MW26A	1,1,2-TRICHLOROETHANE	10 ND		ug/L	VOA	0002P014	
IR-07	IR07MW26A	1,1-DICHLOROETHANE	10 ND		ug/L	VOA	0002P014	
IR-07	IR07MW26A	1,1-DICHLOROETHANE	10 ND		ug/L	VOA	0002P014	
IR-07	IR07MW26A IR07MW26A	1,2-DICHLOROETHANE	10 ND		ug/L	VOA	0002P014	
IR-07	IR07MW26A	1,2-DICHLOROETHANE	10 ND	22,400	ug/L	VOA	0002P014	
	IR07MW26A	1,2-DICHLOROPROPANE	10 ND		ug/L	VOA	0002P014	
IR-07 IR-07	IR07MW26A	2-BUTANONE	10 ND		ug/L	VOA	0002P014	
IR-07	IR07MW26A	2-HEXANONE	10 ND		ug/L	VOA	0002P014	
IR-07	IR07MW26A	4-METHYL-2-PENTANONE	10 ND		ug/L	VOA	0002P014	
IR-07	IR07MW26A	ACETONE	10 ND		ug/L	VOA	0002P014	
IR-07	IR07MW26A	ALUMINUM	15.5 ND		ug/L	DMETAL	0002P014	
IR-07	IR07MW26A	ANTIMONY	8.3	500	ug/L	DMETAL	0002P014	
IR-07	IR07MW26A	ARSENIC	2.5 ND	36	ug/L	DMETAL	0002P014	L

IR Site	Monitoring Well ID	Analyte	Analytical Result (ug/L)	Trigger Level (ug/L)	Units	Analytical Group	Sample Number	Associated Sample Number
IR-07	IR07MW26A	BARIUM	697 -	504			0002P014	
IR-07	IR07MW26A	BENZENE	10 ND		ug/L	VOA	0002P014	
IR-07	IR07MW26A	BERYLLIUM	0.31 ND	1.4		DMETAL	0002P014	
IR-07	IR07MW26A	BROMODICHLOROMETHANE	10 ND		ug/L	VOA	0002P014	
IR-07	IR07MW26A	BROMOFORM	10 ND		ug/L	VOA	0002P014 0002P014	
IR-07	IR07MW26A	BROMOMETHANE	10 ND		ug/L	VOA DMETAL	0002P014	 -
IR-07	IR07MW26A	CADMIUM	0.58 ND	9.3		DMETAL	0002P014	
IR-07	IR07MW26A	CALCIUM	416,000 -	=_		VOA	0002P014	
IR-07	IR07MW26A	CARBON DISULFIDE	10 ND		ug/L ug/L	VOA	0002F014	
IR-07	IR07MW26A	CARBON TETRACHLORIDE	10 ND			VOA	0002P014	
IR-07	IR07MW26A	CHLOROBENZENE	10 ND	 	ug/L	VOA	0002P014	
IR-07	IR07MW26A	CHLOROETHANE	10 ND			VOA	0002P014	
IR-07	IR07MW26A	CHLOROFORM	10 ND	<u>-</u>	ug/L	VOA	0002P014	
IR-07	IR07MW26A	CHLOROMETHANE	8.4 ND	15.7		DMETAL	0002P014	T
IR-07	IR07MW26A	CHROMIUM	10 ND		ug/L	CHROM	0002P014	
IR-07	IR07MW26A	CHROMIUM VI	10 ND		ug/L	VOA	0002P014	1
IR-07	IR07MW26A	CIS-1,3-DICHLOROPROPENE	3	20.8		DMETAL	0002P014	
IR-07	IR07MW26A	CORRER	6 ND	28		DMETAL	0002P014	
IR-07	IR07MW26A	COPPER DIBROMOCHLOROMETHANE	10 ND		ug/L	VOA	0002P014	
IR-07	IR07MW26A	DIESEL RANGE ORGANICS	100 ND	1,250	ug/L	TPHEXT	0002P014	
IR-07	IR07MW26A	ETHYLBENZENE	10 ND		ug/L	VOA	0002P014	
IR-07	IR07MW26A	GASOLINE RANGE ORGANICS	50 ND	1,250	ug/L	TPHPRG	0002P014	
IR-07	IR07MW26A	IRON	20.3 ND		ug/L	DMETAL	0002P014	
IR-07 IR-07	IR07MW26A IR07MW26A	LEAD	1.3 ND	14.4	ug/L	DMETAL	0002P014	
IR-07	IR07MW26A	MAGNESIUM	1,220,000		ug/L	DMETAL	0002P014	
IR-07	IR07MW26A	MANGANESE	697 -	8,140	ug/L	DMETAL	0002P014	
IR-07	IR07MW26A	MERCURY	0.12 ND	0.6	ug/L	DMETAL	0002P014	
IR-07	IR07MW26A	METHYLENE CHLORIDE	10 ND	-	ug/L	VOA	0002P014	
IR-07	IR07MW26A	MOLYBDENUM	5.4 ND		ug/L	DMETAL	0002P014	
IR-07	IR07MW26A	MOTOR OIL RANGE ORGANICS	100 ND		ug/L	TPHEXT	0002P014	
IR-07	IR07MW26A	NICKEL	36.9	96.5	ug/L	DMETAL_	0002P014	
IR-07	IR07MW26A	POTASSIUM	346,000	<u> </u>	ug/L	DMETAL	0002P014	
IR-07	IR07MW26A	PROPANE, 2-METHOXY-2-METHYL-	5 ND		ug/L	VOA	0002P014	ļ
IR-07	IR07MW26A	SELENIUM	2.2 ND		ug/L	DMETAL	0002P014	
IR-07	IR07MW26A	SILVER	6.2 ND	7.43	ug/L	DMETAL	0002P014	
IR-07	IR07MW26A	SODIUM	7,820,000 -		ug/L	DMETAL_	0002P014	
IR-07	IR07MW26A	STYRENE	10 ND		ug/L	VOA	0002P014	
IR-07	IR07MW26A	TETRACHLOROETHENE	10 ND	 	ug/L	VOA	0002P014	
IR-07	IR07MW26A	THALLIUM	5.3 -	13		DMETAL	0002P014	
IR-07	IR07MW26A	TOLUENE	10 ND	ļ	+	VOA	0002P014	
IR-07	IR07MW26A	TRANS-1,3-DICHLOROPROPENE	10 ND		lug/L	VOA	0002P014	
IR-07	IR07MW26A	TRICHLOROETHENE	10 ND	200	ug/L	VOA	0002P014	
IR-07	IR07MW26A	VANADIUM	6.1	=	ug/L	DMETAL		
IR-07	IR07MW26A	VINYL CHLORIDE	10 ND	55	ug/L	VOA VOA	0002P014 0002P014	1
IR-07	IR07MW26A	XYLENE (TOTAL)	10 ND		ug/L ug/L	DMETAL	0002P014	1
IR-07	IR07MW26A	ZINC	198	81	ug/L	DMETAL	00021 014	
IR-07	IR07MW27A	SENTINEL MONITORING			ug/L	VOA	0002F015	1
IR-07	IR07MW27A	1,1,1-TRICHLOROETHANE	10 ND		ug/L	VOA	0002F015	1
IR-07	IR07MW27A	1,1,2,2-TETRACHLOROETHANE	10 ND		ug/L	VOA	0002F015	1
IR-07	IR07MW27A	1.1.2-TRICHLOROETHANE	10 ND		ug/L	VOA	0002F015	
IR-07	IR07MW27A	1,1-DICHLOROETHANE	10 ND		ug/L	VOA	0002F015	
IR-07	IR07MW27A	1,1-DICHLOROETHANE	10 ND		ug/L	VOA	0002F015	
IR-07	IR07MW27A	1,2-DICHLOROETHANE	10 ND		ug/L	VOA	0002F015	
IR-07	IR07MW27A	1,2-DICHLOROETHENE (TOTAL)	10 ND		ug/L	VOA	0002F015	
IR-07	IR07MW27A	1,2-DICHLOROPROPANE	10 ND	+	ug/L	VOA	0002F015	
IR-07	IR07MW27A	2-BUTANONE 2-HEXANONE	10 ND	+	ug/L	VOA	0002F015	1
IR-07	IR07MW27A	4-METHYL-2-PENTANONE	10 ND		ug/L	VOA	0002F015	
IR-07	IR07MW27A	ACETONE	10 ND		ug/L	VOA	0002F015	1

IR Site	Monitoring Well ID	Analyte	Analytical Result (ug/L)	Trigger Level (ug/L)	Units	Analytical Group	Sample Number	Associated Sample Number
IR-07	IR07MW27A	ALUMINUM	15.6 ND		ug/L	DMETAL_	0002F015	 _
IR-07		ANTIMONY	3.5 -	5,000		DMETAL_	0002F015	
-		ARSENIC	51.1	360	ug/L	DMETAL_	0002F015	
IR-07	IR07MW27A	BARIUM	634	5,040	ug/L	DMETAL	0002F015	
IR-07	IR07MW27A	BENZENE	10 ND		ug/L	VOA	0002F015	
IR-07	IR07MW27A	BERYLLIUM	0.1 ND	14	ug/L	DMETAL	0002F015	<u> </u>
IR-07	IR07MW27A	BROMODICHLOROMETHANE	10 ND	-	ug/L	VOA	0002F015	
IR-07	IR07MW27A	BROMOFORM	10 ND		ug/L	VOA	0002F015	-
IR-07	IR07MW27A	BROMOMETHANE	10 ND		ug/L	VOA	0002F015	
IR-07	IR07MW27A	CADMIUM	0.2 ND	93	ug/L	DMETAL	0002F015	
IR-07	IR07MW27A	CALCIUM	17,900 -		ug/L	DMETAL	0002F015	
IR-07	IR07MW27A	CARBON DISULFIDE	10 ND		ug/L	VOA	0002F015	
IR-07	IR07MW27A	CARBON TETRACHLORIDE	10 ND		ug/L	VOA	0002F015	-
IR-07	IR07MW27A	CHLOROBENZENE	10 ND		ug/L	VOA	0002F015	<u> </u>
IR-07	IR07MW27A	CHLOROETHANE	10 ND		ug/L	VOA	0002F015	
IR-07	IR07MW27A	CHLOROFORM	10 ND		ug/L	VOA	0002F015	
IR-07	IR07MW27A	CHLOROMETHANE	10 ND		ug/L	VOA	0002F015	<u> </u>
IR-07	IR07MW27A	CHROMIUM	1 ND	157	ug/L	DMETAL	0002F015	
IR-07	IR07MW27A	CHROMIUM VI	10 ND	-	ug/L	CHROM	0002F015	
IR-07	IR07MW27A	CIS-1,3-DICHLOROPROPENE	10 ND		ug/L	VOA	0002F015	
IR-07	IR07MW27A	COBALT	1.3 ND	208	ug/L	DMETAL_	0002F015	
IR-07	IR07MW27A	COPPER	8.6 ND	280	ug/L	DMETAL	0002F015	
IR-07	IR07MW27A	DIBROMOCHLOROMETHANE	10 ND	-	ug/L	VOA	0002F015	
IR-07	IR07MW27A	DIESEL RANGE ORGANICS	100 ND	1,250	ug/L	TPHEXT	0002F015	
IR-07	IR07MW27A	ETHYLBENZENE	10 ND		ug/L	VOA	0002F015	
IR-07	IR07MW27A	GASOLINE RANGE ORGANICS	50 ND	1,250	ug/L	TPHPRG	0002F015	
IR-07	IR07MW27A	IRON	20.3 ND		ug/L	DMETAL	0002F015	
IR-07	IR07MW27A	LEAD	1.3 ND	144	ug/L	DMETAL	0002F015	
IR-07	IR07MW27A	MAGNESIUM	34,100	-	ug/L	DMETAL	0002F015	<u> </u>
IR-07	IR07MW27A	MANGANESE .	147	81,400	ug/L	DMETAL.	0002F015	
IR-07	IR07MW27A	MERCURY	0.1 ND	6	ug/L	DMETAL	0002F015	
IR-07	IR07MW27A	METHYLENE CHLORIDE .	10 ND		ug/L	VOA	0002F015	}
IR-07	IR07MW27A	MOLYBDENUM	5.1 ND		ug/L	DMETAL	0002F015	
IR-07	IR07MW27A	MOTOR OIL RANGE ORGANICS	100 ND	-	ug/L.	TPHEXT	0002F015	
IR-07	IR07MW27A	NICKEL	3.1	965	ug/L	DMETAL	0002F015	
IR-07	IR07MW27A	POTASSIUM	9,080	-	ug/L	DMETAL	0002F015	
IR-07	IR07MW27A	PROPANE, 2-METHOXY-2-METHYL-	5 ND		ug/L	VOA	0002F015	<u> </u>
IR-07	IR07MW27A	SELENIUM	2.2 ND		ug/L	DMETAL	0002F015	
	IR07MW27A	SILVER	1.3 ND	74.3	ug/L	DMETAL	0002F015	
IR-07	IR07MW27A	SODIUM	231,000		ug/L	DMETAL	0002F015	
IR-07	IR07MW27A	STYRENE	10 ND			VOA	0002F015	
IR-07	IR07MW27A	TETRACHLOROETHENE	10 ND		ug/L	VOA	0002F015	
IR-07	IR07MW27A	THALLIUM	3.2 ND	130	ug/L	DMETAL_	0002F015	
IR-07	IR07MW27A	TOLUENE	10 ND		ug/L	VOA	0002F015	
IR-07	IR07MW27A	TRANS-1,3-DICHLOROPROPENE	10 ND		ug/L	VOA	0002F015	
IR-07	IR07MW27A	TRICHLOROETHENE	10 ND	2,000	ug/L	VOA	0002F015	
IR-07	IR07MW27A	VANADIUM	15.2		ug/L	DMETAL_	0002F015	-
IR-07	IR07MW27A	VINYL CHLORIDE	10 ND	55	ug/L	VOA	0002F015	
IR-07	IR07MW27A	XYLENE (TOTAL)	10 ND		ug/L	VOA_	0002F015	
IR-07	IR07MW27A	ZINC	116	810	ug/L	DMETAL_	0002F015	
IR-07	IR07MW28A	ON/OFF-SITE MIGRATION MONITO				VO 2	00035040	
IR-07	IR07MW28A	1,1,1-TRICHLOROETHANE	10 ND		ug/L	VOA	0002F019	0002F019
IR-07	IR07MW28A	1,1,1-TRICHLOROETHANE	10 ND		ug/L	VOA	0002F020	10002F019
IR-07	IR07MW28A	1,1,2,2-TETRACHLOROETHANE	10 ND		ug/L	VOA	0002F019	0002F019
IR-07	IR07MW28A	1,1,2,2-TETRACHLOROETHANE	10 ND		ug/L	VOA	0002F020	00021019
IR-07	IR07MW28A	1,1,2-TRICHLOROETHANE	10 ND		ug/L	VOA	0002F019	0002F019
IR-07	IR07MW28A	1,1,2-TRICHLOROETHANE	10 ND		ug/L	VOA	0002F020	00025018
IR-07	IR07MW28A	1,1-DICHLOROETHANE	10 ND		ug/L	VOA	0002F019	0002F019
IR-07	IR07MW28A	1,1-DICHLOROETHANE	10 ND	1	ug/L	VOA	0002F020	100021019
IR-07	IR07MW28A	1,1-DICHLOROETHENE	10 ND		ug/L	VOA	0002F019	

	T	T			т	r	T	T T
IR Site	Monitoring Well ID	Analyte	Analytical Result (ug/L)	Trigger Level (ug/L)	Units	Analytical Group	Sample Number	Associated Sample Number
IR-07	IR07MW28A	1,1-DICHLOROETHENE	10 ND		ug/L	VOA	0002F020	0002F019
IR-07	IR07MW28A	1,2,4-TRICHLOROBENZENE	10 ND		ug/L	SVOA	0002F019	
IR-07	IR07MW28A	1,2,4-TRICHLOROBENZENE	10 ND		ug/L	SVOA	0002F020	0002F019
IR-07	IR07MW28A	1,2-DICHLOROBENZENE	5 ND		ug/L	SVOA	0002F019	ļ
IR-07	IR07MW28A	1,2-DICHLOROBENZENE	5 ND	-	ug/L	SVOA	0002F020	0002F019
IR-07	IR07MW28A	1,2-DICHLOROETHANE	10 ND	<u> </u>	ug/L	VOA	0002F019	
IR-07	IR07MW28A	1,2-DICHLOROETHANE	10 ND	-	ug/L	VOA	0002F020	0002F019
IR-07	IR07MW28A	1,2-DICHLOROETHENE (TOTAL)	10 ND	22,400	ug/L	VOA	0002F019	
IR-07	IR07MW28A	1,2-DICHLOROETHENE (TOTAL)	10 ND	22,400	ug/L	VOA	0002F020	0002F019
IR-07	IR07MW28A	1,2-DICHLOROPROPANE	10 ND		ug/L	VOA	0002F019	
IR-07	IR07MW28A	1,2-DICHLOROPROPANE	10 ND			VOA	0002F020	0002F019
IR-07	IR07MW28A	1,3-DICHLOROBENZENE	5 ND			SVOA	0002F019	
IR-07	IR07MW28A	1,3-DICHLOROBENZENE	5 ND			SVOA	0002F020	0002F019
IR-07	IR07MW28A	1,4-DICHLOROBENZENE	5 ND		ug/L	SVOA	0002F019	
	IR07MW28A	1,4-DICHLOROBENZENE	5 ND		-	SVOA	0002F020	0002F019
IR-07	IR07MW28A	2,2'-OXYBIS(1-CHLOROPROPANE)	10 ND		ug/L	SVOA	0002F019	
IR-07	IR07MW28A	2,2'-OXYBIS(1-CHLOROPROPANE)	10 ND			SVOA	0002F020	0002F019
	IR07MW28A	2,4,5-TRICHLOROPHENOL	26 ND			SVOA	0002F019	
IR-07	IR07MW28A	2,4,5-TRICHLOROPHENOL	25 ND			SVOA	0002F020	0002F019
IR-07	IR07MW28A	2,4,6-TRICHLOROPHENOL	10 ND	-	ug/L	SVOA	0002F019	
IR-07	IR07MW28A	2,4,6-TRICHLOROPHENOL	10 ND		ug/L	SVOA	0002F020	0002F019
IR-07	IR07MW28A	2,4-DICHLOROPHENOL	10 ND		ug/L	SVOA	0002F019	
IR-07	IR07MW28A	2,4-DICHLOROPHENOL	10 ND			SVOA	0002F020	0002F019
	IR07MW28A	2,4-DIMETHYLPHENOL	10 ND		ug/L	SVOA	0002F019	2225242
	IR07MW28A	2,4-DIMETHYLPHENOL	10 ND			SVOA	0002F020	0002F019
	IR07MW28A	2,4-DINITROPHENOL	26 ND			SVOA	0002F019	00005010
		2,4-DINITROPHENOL	25 ND			SVOA	0002F020	0002F019
IR-07	IR07MW28A	2,4-DINITROTOLUENE	10 ND			SVOA SVOA	0002F019	0002F019
		2,4-DINITROTOLUENE	10 ND			SVOA	0002F020 0002F019	0002F019
IR-07	IR07MW28A	2,6-DINITROTOLUENE	10 ND			SVOA	0002F019 0002F020	0002F019
IR-07	IR07MW28A	2.6-DINITROTOLUENE	10 ND		_	VOA	0002F019	00021019
IR-07		2-BUTANONE	10 ND			VOA	0002F020	0002F019
	IR07MW28A	2-BUTANONE	10 ND	300		SVOA	0002F019	00021 010
IR-07	IR07MW28A IR07MW28A	2-CHLORONAPHTHALENE 2-CHLORONAPHTHALENE	10 ND	300		SVOA	0002F020	0002F019
	IR07MW28A	2-CHLOROPHENOL	10 ND			SVOA	0002F019	00021010
IR-07	IR07MW28A	2-CHLOROPHENOL	10 ND			SVOA	0002F020	0002F019
	IR07MW28A	2-HEXANONE	10 ND			VOA	0002F019	0002:0:0
		2-HEXANONE	10 ND			VOA	0002F020	0002F019
		2-METHYLNAPHTHALENE	10 ND	300		SVOA	0002F019	
	IR07MW28A	2-METHYLNAPHTHALENE	10 ND	300			0002F020	0002F019
	IR07MW28A	2-METHYLPHENOL	10 ND			SVOA	0002F019	
	IR07MW28A	2-METHYLPHENOL	10 ND			SVOA	0002F020	0002F019
	IR07MW28A	2-NITROANILINE	26 ND		_		0002F019	
		2-NITROANILINE	25 ND				0002F020	0002F019
	IR07MW28A	2-NITROPHENOL	10 ND			SVOA	0002F019	
	IR07MW28A	2-NITROPHENOL	10 ND			SVOA	0002F020	0002F019
	IR07MW28A	3,3'-DICHLOROBENZIDINE	10 ND	-	ug/L	SVOA	0002F019	
		3,3'-DICHLOROBENZIDINE	10 ND			SVOA	0002F020	0002F019
	IR07MW28A	3-NITROANILINE	26 ND		ug/L	SVOA	0002F019	
	IR07MW28A	3-NITROANILINE	25 ND		ug/L	SVOA	0002F020	0002F019
		4,4'-DDD	0.06		ug/L	PEST	0002F019	
IR-07	IR07MW28A	4,4'-DDD	0.06		ug/L	PEST	0002F020	0002F019
		4,4'-DDE	0.02 ND			PEST	0002F019	
		4,4'-DDE	0.02 ND		ug/L	PEST	0002F020	0002F019
		4,4'-DDT	0.02 ND		ug/L	PEST	0002F019	
IR-07	IR07MW28A	4,4'-DDT	0.02 ND			PEST	0002F020	0002F019
IR-07	IR07MW28A	4,6-DINITRO-2-METHYLPHENOL	26 ND			SVOA	0002F019	
IR-07	IR07MW28A	4.6-DINITRO-2-METHYLPHENOL	25 ND				0002F020	0002F019
IR-07	IR07MW28A	4-BROMOPHENYL-PHENYLETHER	10 ND		ug/L	SVOA	0002F019	

IR Site	Monitoring Well ID	Analyte	Analytical Result (ug/L)	Trigger Level (ug/L)	Units	Analytical Group	Sample Number	Associated Sample Number
IR-07	IR07MW28A	4-BROMOPHENYL-PHENYLETHER	10 ND		ug/L	SVOA	0002F020	0002F019
IR-07	IR07MW28A	4-CHLORO-3-METHYLPHENOL	10 ND		 -	SVOA	0002F019	
IR-07	IR07MW28A	4-CHLORO-3-METHYLPHENOL	10 ND		ug/L	SVOA	0002F020	0002F019
IR-07	IR07MW28A	4-CHLOROANILINE	10 ND	-		SVOA	0002F019	
IR-07	IR07MW28A	4-CHLOROANILINE	10 ND			SVOA	0002F020	0002F019
-	IR07MW28A	4-CHLOROPHENYL-PHENYLETHER	10 ND		 	SVOA	0002F019	00005040
	IR07MW28A	4-CHLOROPHENYL-PHENYLETHER	10 ND	-	 	SVOA	0002F020	0002F019
	IR07MW28A	4-METHYL-2-PENTANONE	10 ND		+	VOA	0002F019	0002F019
IR-07	IR07MW28A	4-METHYL-2-PENTANONE	10 ND		ug/L_	VOA	0002F020	0002F019
IR-07	IR07MW28A	4-METHYLPHENOL	10 ND			SVOA	0002F019 0002F020	0002F019
IR-07	IR07MW28A	4-METHYLPHENOL	10 ND			SVOA	0002F020 0002F019	0002F019
IR-07	IR07MW28A	4-NITROANILINE	26 ND		ug/L_	SVOA	0002F019 0002F020	0002F019
	IR07MW28A	4-NITROANILINE	· 25 ND		×	SVOA	0002F020 0002F019	00021 019
IR-07	IR07MW28A	4-NITROPHENOL	26 ND			SVOA	0002F019 0002F020	0002F019
IR-07	IR07MW28A	4-NITROPHENOL	25 ND 10 ND	300		SVOA	0002F019	00027 010
	IR07MW28A	ACENAPHTHENE	10 ND 10 ND	300		SVOA	0002F019	0002F019
IR-07	IR07MW28A	ACENAPHTHENE	10 ND	300		SVOA	0002F020 0002F019	1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
IR-07	IR07MW28A	ACENAPHTHYLENE	10 ND	300	ug/L	SVOA	0002F020	0002F019
IR-07	IR07MW28A	ACETONE	10 ND			VOA	0002F019	1
IR-07 IR-07	IR07MW28A	ACETONE	10 ND		ug/L	VOA	0002F020	0002F019
IR-07	IR07MW28A IR07MW28A	ALDRIN	0.01 ND		_	PEST	0002F019	
IR-07	IR07MW28A	ALDRIN	0.01 ND			PEST	0002F020	0002F019
IR-07	IR07MW28A	ALPHA-BHC	0.01 ND	-		PEST	0002F019	
	IR07MW28A	ALPHA-BHC	0.01 ND	_		PEST	0002F020	0002F019
IR-07	IR07MW28A	ALPHA-CHLORDANE	0.01 ND			PEST	0002F019	
IR-07	IR07MW28A	ALPHA-CHLORDANE	0.01 ND		ug/L	PEST	0002F020	0002F019
IR-07	IR07MW28A	ALUMINUM	15.5 ND		ug/L	DMETAL	0002F019	
IR-07	IR07MW28A	ALUMINUM	15.5 ND		ug/L	DMETAL	0002F020	0002F019
IR-07	IR07MW28A	ANTHRACENE	10 ND	300	ug/L	SVOA	0002F019	
IR-07	IR07MW28A	ANTHRACENE	10 ND	300	ug/L	SVOA	0002F020	0002F019
IR-07	IR07MW28A	ANTIMONY	8	500	ug/L	DMETAL	0002F019	
IR-07	IR07MW28A	ANTIMONY	6.2 ~	500		DMETAL	0002F020	0002F019
IR-07	IR07MW28A	AROCLOR-1016	0.1 ND	0.19		PEST	0002F019	ļ
IR-07	IR07MW28A	AROCLOR-1016	0.1 ND	0.19	+	PEST	0002F020	0002F019
IR-07	IR07MW28A	AROCLOR-1221	0.2 ND	0.19		PEST	0002F019	
IR-07	IR07MW28A	AROCLOR-1221	0.2 ND	0.19		PEST	0002F020	0002F019
IR-07	IR07MW28A	AROCLOR-1232	0.1 ND	0.19		PEST	0002F019	00000000
IR-07	IR07MW28A	AROCLOR-1232	0.1 ND	0.19		PEST	0002F020	0002F019
IR-07	IR07MW28A	AROCLOR-1242	0.1 ND	0.19		PEST	0002F019	00005040
IR-07	IR07MW28A	AROCLOR-1242	0.1 ND	0.19		PEST	0002F020	0002F019
IR-07	IR07MW28A	AROCLOR-1248	0.1 ND	0.19		PEST	0002F019	00035010
IR-07	IR07MW28A	AROCLOR-1248	0.1 ND	0.19	1	PEST	0002F020 0002F019	0002F019
IR-07	IR07MW28A	AROCLOR-1254	0.1 ND	0.19	+-	PEST	0002F019 0002F020	0002F019
IR-07	IR07MW28A	AROCLOR-1254	0.1 ND	0.19		PEST PEST	0002F020 0002F019	00021019
IR-07	IR07MW28A	AROCLOR-1260	0.1 ND	0.19		PEST	0002F019 0002F020	0002F019
IR-07	IR07MW28A	AROCLOR-1260	0.1 ND	0.19 36	ug/L ug/L	DMETAL	0002F020 0002F019	33021 010
IR-07	IR07MW28A	ARSENIC	8.4 ND 6.6 ND	36		DMETAL	0002F019 0002F020	0002F019
IR-07	IR07MW28A	ARSENIC	549	504		DMETAL	0002F019	3002. 310
IR-07	IR07MW28A	BARIUM	637 -	504	_	DMETAL	0002F020	0002F019
IR-07	IR07MW28A	BARIUM	10 ND	- 304	ug/L	VOA	0002F019	T
IR-07	IR07MW28A	BENZENE BENZENE	10 ND			VOA	0002F020	0002F019
IR-07	IR07MW28A	BENZO(A)ANTHRACENE	10 ND	300	+	SVOA	0002F019	
IR-07	IR07MW28A IR07MW28A	BENZO(A)ANTHRACENE BENZO(A)ANTHRACENE	10 ND	300		SVOA	0002F020	0002F019
IR-07 IR-07	IR07MW28A	BENZO(A)PYRENE	10 ND	300	ug/L	SVOA	0002F019	
IR-07	IR07MW28A	BENZO(A)PYRENE	10 ND	300	ug/L	SVOA	0002F020	0002F019
IR-07	IR07MW28A	BENZO(B)FLUORANTHENE	10 ND	300	ug/L	SVOA	0002F019	
IR-07	IR07MW28A	BENZO(B)FLUORANTHENE	10 ND	300		SVOA	0002F020	0002F019
IR-07	IR07MW28A	BENZO(G,H,I)PERYLENE	10 ND	300	 -	SVOA	0002F019	

IR Site	Monitoring Well ID	Analyte	Analytical Result (ug/L)	Trigger Level (ug/L)	Units	Analytical Group	Sample Number	Associated Sample Number
IR-07		BENZO(G,H,I)PERYLENE	10 ND	300	ug/L	SVOA	0002F020	0002F019
		BENZO(K)FLUORANTHENE	10 ND	300	ug/L lug/L	SVOA SVOA	0002F019 0002F020	0002F019
IR-07		BENZO(K)FLUORANTHENE	10 ND 0.23 ND	300 1.4		DMETAL	0002F020 0002F019	00021 013
		BERYLLIUM	0.23 ND	1.4	lug/L	DMETAL	0002F020	0002F019
IR-07		BERYLLIUM	0.21 ND	-	ua/L	PEST	0002F019	100021 0 10
IR-07		BETA-BHC	0.01 ND		ug/L	PEST	0002F020	0002F019
	IR07MW28A	BETA-BHC	10 ND			SVOA	0002F019	
IR-07	IR07MW28A	BIS(2-CHLOROETHOXY)METHANE BIS(2-CHLOROETHOXY)METHANE	10 ND		ug/L	SVOA	0002F020	0002F019
		BIS(2-CHLOROETHYL)ETHER	10 ND		ug/L	SVOA	0002F019	
IR-07 IR-07	IR07MW28A	BIS(2-CHLOROETHYL)ETHER	10 ND			SVOA	0002F020	0002F019
		BIS(2-ETHYLHEXYL)PHTHALATE	4 ND			SVOA	0002F019	
	IR07MW28A	BIS(2-ETHYLHEXYL)PHTHALATE	4 ND		ug/L	SVOA	0002F020	0002F019
IR-07	IR07MW28A	BROMODICHLOROMETHANE	10 ND		ug/L	VOA	0002F019	
	IR07MW28A	BROMODICHLOROMETHANE	10 ND		ug/L	VOA	0002F020	0002F019
		BROMOFORM	10 ND		ug/L	VOA	0002F019	
IR-07	IR07MW28A	BROMOFORM	10 ND		ug/L	VOA	0002F020	0002F019
IR-07	IR07MW28A	BROMOMETHANE	10 ND		ug/L	VOA	0002F019	
	IR07MW28A	BROMOMETHANE	10 ND		ug/L	VOA	0002F020	0002F019
	IR07MW28A	BUTYLBENZYLPHTHALATE	10 ND	_	ug/L	SVOA	0002F019	L
	IR07MW28A	BUTYLBENZYLPHTHALATE	10 ND		ug/L	SVOA	0002F020	0002F019
	IR07MW28A	CADMIUM	0.2 ND	9.3	ug/L	DMETAL	0002F019	<u> </u>
	IR07MW28A	CADMIUM	0.2 ND	9.3	ug/L	DMETAL	0002F020	0002F019
IR-07	IR07MW28A	CALCIUM	169,000		ug/L	DMETAL	0002F019	<u> </u>
	IR07MW28A	CALCIUM	166,000		ug/L	DMETAL	0002F020	0002F019
IR-07	IR07MW28A	CARBAZOLE	10 ND		ug/L	SVOA	0002F019	
IR-07	IR07MW28A	CARBAZOLE	10 ND			SVOA	0002F020	0002F019
IR-07	IR07MW28A	CARBON DISULFIDE	10 ND		ug/L	VOA	0002F019	
IR-07	IR07MW28A	CARBON DISULFIDE	10 ND		ug/L	VOA	0002F020	0002F019
IR-07	IR07MW28A	CARBON TETRACHLORIDE	10 ND		ug/L	VOA	0002F019	100005010
IR-07	IR07MW28A	CARBON TETRACHLORIDE	10 ND		ug/L	VOA	0002F020	0002F019
IR-07	IR07MW28A	CHLOROBENZENE	10 ND		ug/L	VOA	0002F019	0002F019
IR-07	IR07MW28A	CHLOROBENZENE	10 ND		ug/L	VOA	0002F020	0002F019
IR-07	IR07MW28A	CHLOROETHANE	10 ND		ug/L	VOA VOA	0002F019 0002F020	0002F019
IR-07	IR07MW28A	CHLOROETHANE	10 ND		ug/L ug/L	VOA	0002F020 0002F019	00021 019
IR-07	IR07MW28A	CHLOROFORM	10 ND		ug/L	VOA	0002F020	0002F019
	IR07MW28A	CHLOROFORM	10 ND		ug/L	VOA	0002F019	00027 010
IR-07	IR07MW28A	CHLOROMETHANE	10 ND		ug/L	VOA	0002F020	0002F019
IR-07	IR07MW28A	CHLOROMETHANE	1 ND	15.7			0002F019	100021.010
		CHROMIUM	1 ND	15.7		DMETAL	0002F020	0002F019
IR-07		CHROMIUM	10 ND	10.7		CHROM	0002F019	
IR-07	IR07MW28A IR07MW28A	CHROMIUM VI	10 ND		+	CHROM	0002F020	0002F019
IR-07	IR07MW28A	CHRYSENE	10 ND	300	+	SVOA	0002F019	·
IR-07 IR-07	IR07MW28A	CHRYSENE	10 ND	300	ug/L	SVOA	0002F020	0002F019
IR-07	IR07MW28A	CIS-1,3-DICHLOROPROPENE	10 ND		ug/L	VOA	0002F019	
IR-07	IR07MW28A	CIS-1,3-DICHLOROPROPENE	10 ND			VOA	0002F020	0002F019
IR-07	IR07MW28A	COBALT	1.3 ND	20.8	ug/L	DMETAL	0002F019	
IR-07	IR07MW28A	COBALT	1.3 ND	20.8	ug/L	DMETAL	0002F020	0002F019
IR-07	IR07MW28A	COPPER	2.2 ND	28	ug/L	DMETAL	0002F019	
IR-07	IR07MW28A	COPPER	1.9 ND	28	ug/L	DMETAL	0002F020	0002F019
IR-07	IR07MW28A	DELTA-BHC	0.01 ND		ug/L	PEST	0002F019	
IR-07	IR07MW28A	DELTA-BHC	0.01 ND	-	ug/L	PEST	0002F020	0002F019
IR-07	IR07MW28A	DIBENZ(A,H)ANTHRACENE	10 ND	300	ug/L_	SVOA	0002F019	
IR-07	IR07MW28A	DIBENZ(A,H)ANTHRACENE	10 ND	300	ug/L	SVOA	0002F020	0002F019
IR-07	IR07MW28A	DIBENZOFURAN	10 ND		ug/L_	SVOA	0002F019	1
IR-07	IR07MW28A	DIBENZOFURAN	10 ND		ug/L	SVOA	0002F020	0002F019
IR-07	IR07MW28A	DIBROMOCHLOROMETHANE	10 ND		ug/L	VOA	0002F019	100005015
IR-07	IR07MW28A	DIBROMOCHLOROMETHANE	10 ND		ug/L_	VOA	0002F020	0002F019
IR-07	IR07MW28A	DIELDRIN	0.02 ND	L	lug/L	PEST	0002F019	

IR Site	Monitoring Well ID	Analyte	Analytical Result (ug/L)	Trigger Level (ug/L)	Units	Analytical Group	Sample Number	Associated Sample Number
IR-07	IR07MW28A	DIELDRIN	0.02 ND		ug/L	PEST	0002F020	0002F019
IR-07	IR07MW28A	DIESEL RANGE ORGANICS	100 ND	1,250	ug/L		0002F019	2225242
IR-07	IR07MW28A	DIESEL RANGE ORGANICS	100 ND	1,250	ug/L	TPHEXT	0002F020	0002F019
IR-07	IR07MW28A	DIETHYLPHTHALATE	10 ND		ug/L	SVOA	0002F019	00005010
IR-07	IR07MW28A	DIETHYLPHTHALATE	10 ND		ug/L		0002F020	0002F019
IR-07	IR07MW28A	DIMETHYLPHTHALATE	10 ND		ug/L	SVOA	0002F019	0002F019
IR-07	IR07MW28A	DIMETHYLPHTHALATE	10 ND		ug/L	SVOA	0002F020 0002F019	0002F019
IR-07	IR07MW28A	DI-N-BUTYLPHTHALATE	10 ND		ug/L	SVOA SVOA	0002F019 0002F020	0002F019
IR-07	IR07MW28A	DI-N-BUTYLPHTHALATE	10 ND		ug/L ug/L	SVOA	0002F020	00021 013
	IR07MW28A	DI-N-OCTYLPHTHALATE	10 ND			SVOA	0002F020	0002F019
IR-07	IR07MW28A	DI-N-OCTYLPHTHALATE	10 ND			PEST	0002F019	00021010
IR-07	IR07MW28A	ENDOSULFAN I	0.01 ND 0.01 ND		ug/L	PEST	0002F020	0002F019
IR-07	IR07MW28A	ENDOSULFAN I	0.01 ND 0.02 ND			PEST	0002F019	0002, 0.0
IR-07	IR07MW28A	ENDOSULFAN II	0.02 ND			PEST	0002F020	0002F019
	IR07MW28A	ENDOSULFAN II	0.02 ND			PEST	0002F019	0002.0.5
IR-07	IR07MW28A	ENDOSULFAN SULFATE	0.02 ND	-		PEST	0002F020	0002F019
IR-07	IR07MW28A	ENDOSULFAN SULFATE	0.02 ND		ug/L	PEST	0002F019	
IR-07	IR07MW28A	ENDRIN	0.02 ND		ug/L	PEST	0002F020	0002F019
	IR07MW28A	ENDRIN	0.02 ND		ug/L	PEST	0002F019	
IR-07	IR07MW28A	ENDRIN ALDEHYDE	0.02 ND		ug/L	PEST	0002F020	0002F019
IR-07	IR07MW28A	ENDRIN ALDEHYDE	0.02 ND		ug/L	PEST	0002F019	
	IR07MW28A	ENDRIN KETONE	0.02 ND		ug/L	PEST	0002F020	0002F019
IR-07	IR07MW28A	ENDRIN KETONE	10 ND		ug/L	VOA	0002F019	
IR-07	IR07MW28A	ETHYLBENZENE	10 ND		ug/L	VOA	0002F020	0002F019
IR-07	IR07MW28A	ETHYLBENZENE	10 ND	300	ug/L	SVOA	0002F019	
IR-07	IR07MW28A	FLUORANTHENE	10 ND	300	ug/L	SVOA	0002F020	0002F019
IR-07	IR07MW28A	FLUORANTHENE	10 ND	300	ug/L	SVOA	0002F019	
IR-07	IR07MW28A	FLUORENE FLUORENE	10 ND	300	ug/L	SVOA	0002F020	0002F019
IR-07	IR07MW28A IR07MW28A	GAMMA-BHC (LINDANE)	0.01 ND	-	ug/L	PEST	0002F019	
IR-07 IR-07	IR07MW28A	GAMMA-BHC (LINDANE)	0.01 ND		ug/L	PEST	0002F020	0002F019
IR-07	IR07MW28A	GAMMA-CHLORDANE	0.01 ND		ug/L	PEST	0002F019	
IR-07	IR07MW28A	GAMMA-CHLORDANE	0.01 ND		ug/L	PEST	0002F020	0002F019
IR-07	IR07MW28A	GASOLINE RANGE ORGANICS	50 ND	1,250	ug/L	TPHPRG	0002F019	
IR-07	IR07MW28A	GASOLINE RANGE ORGANICS	50 ND	1,250	ug/L	TPHPRG	0002F020	0002F019
IR-07	IR07MW28A	HEPTACHLOR	0.002 ND		ug/L	PEST	0002F019	
IR-07	IR07MW28A	HEPTACHLOR	0.002 ND		ug/L	PEST	0002F020	0002F019
IR-07	IR07MW28A	HEPTACHLOR EPOXIDE	0.002 ND		ug/L	PEST	0002F019	<u> </u>
IR-07	IR07MW28A	HEPTACHLOR EPOXIDE	0.002 ND		ug/L	PEST	0002F020	0002F019
IR-07		HEXACHLOROBENZENE	10 ND		ug/L	SVOA	0002F019	ļ
IR-07	IR07MW28A	HEXACHLOROBENZENE	10 ND		ug/L	SVOA	0002F020	0002F019
IR-07	IR07MW28A	HEXACHLOROBUTADIENE	10 ND		ug/L	SVOA	0002F019	20005015
IR-07	IR07MW28A	HEXACHLOROBUTADIENE	10 ND			SVOA	0002F020	0002F019
IR-07	IR07MW28A	HEXACHLOROCYCLOPENTADIENE	10 ND		ug/L	SVOA	0002F019	00005040
IR-07	IR07MW28A	HEXACHLOROCYCLOPENTADIENE	10 ND		ug/L	SVOA	0002F020	0002F019
IR-07	IR07MW28A	HEXACHLOROETHANE	10 ND		ug/L	SVOA	0002F019	00035040
IR-07	IR07MW28A	HEXACHLOROETHANE	10 ND		ug/L	SVOA	0002F020	0002F019
IR-07	IR07MW28A	INDENO(1,2,3-CD)PYRENE	10 ND	300	ug/L_	SVOA	0002F019	00035010
IR-07	IR07MW28A	INDENO(1,2,3-CD)PYRENE	10 ND	300	ug/L	SVOA	0002F020	0002F019
IR-07	IR07MW28A	IRON	834		ug/L	DMETAL	0002F019 0002F020	0002F019
IR-07	IR07MW28A	IRON	736	 -	ug/L	DMETAL	0002F020 0002F019	00021019
IR-07	IR07MW28A	ISOPHORONE	10 ND		lug/L	SVOA	0002F020	0002F019
IR-07	IR07MW28A	ISOPHORONE	10 ND	14.4	ug/L	DMETAL	0002F019	55521 515
IR-07	IR07MW28A	LEAD	1.3 ND	14.4	ug/L		0002F019	0002F019
IR-07	IR07MW28A	LEAD	1.3 ND	14.4	ug/L	DMETAL DMETAL	0002F019	00021010
IR-07	IR07MW28A	MAGNESIUM	68,400		ug/L	DMETAL	0002F020	0002F019
IR-07	IR07MW28A	MAGNESIUM	69,800	9 140	ug/L ug/L	DMETAL	0002F019	
IR-07	IR07MW28A	MANGANESE	833	8,140	ug/L	DMETAL	0002F020	0002F019
IR-07	IR07MW28A	MANGANESE	837	8,140 0.6	ug/L	DMETAL	0002F019	1

IR Site	Monitoring Well ID	Analyte	Analytical Result (ug/L)	Trigger Level (ug/L)	Units	Analytical Group	Sample Number 0002F020	Associated Sample Number
IR-07	IR07MW28A	MERCURY	0.1 ND	0.6	ug/L	DMETAL	0002F020 0002F019	10002F019
IR-07	IR07MW28A	METHOXYCHLOR	0.1 ND		ug/L	PEST PEST	0002F019	0002F019
IR-07	IR07MW28A	METHOXYCHLOR	0.1 ND	-	ug/L ug/L	VOA	0002F020 0002F019	00021013
IR-07	IR07MW28A	METHYLENE CHLORIDE	10 ND		ug/L ug/L	VOA	0002F019	0002F019
IR-07	IR07MW28A	METHYLENE CHLORIDE	10 ND 3.2 ND		ug/L	DMETAL	0002F019	0002.070
IR-07	IR07MW28A	MOLYBDENUM	3.2 ND		ug/L	DMETAL	0002F020	0002F019
	IR07MW28A	MOLYBDENUM	600		ug/L	TPHEXT	0002F019	100000
IR-07	IR07MW28A	MOTOR OIL RANGE ORGANICS MOTOR OIL RANGE ORGANICS	400		ug/L	TPHEXT	0002F020	0002F019
IR-07	IR07MW28A IR07MW28A	NAPHTHALENE	10 ND	300	ug/L	SVOA	0002F019	
IR-07 IR-07	IR07MW28A	NAPHTHALENE	10 ND	300	ug/L	SVOA	0002F020	0002F019
IR-07	IR07MW28A	NICKEL	2.1 -	96.5	ug/L	DMETAL	0002F019	
	IR07MW28A	NICKEL	1.7 ND	96.5	ug/L	DMETAL	0002F020	0002F019
IR-07	IR07MW28A	NITROBENZENE	10 ND		ug/L	SVOA	0002F019	
	IR07MW28A	NITROBENZENE	10 ND		ug/L	SVOA	0002F020	0002F019
IR-07	IR07MW28A	N-NITROSO-DI-N-PROPYLAMINE	10 ND	_	ug/L	SVOA	0002F019	
IR-07	IR07MW28A	N-NITROSO-DI-N-PROPYLAMINE	10 ND		ug/L	SVOA	0002F020	0002F019
IR-07	IR07MW28A	N-NITROSODIPHENYLAMINE	10 ND	-	ug/L	SVOA	0002F019	
IR-07	IR07MW28A	N-NITROSODIPHENYLAMINE	10 ND	-	ug/L	SVOA	0002F020	0002F019
	IR07MW28A	PENTACHLOROPHENOL	26 ND		ug/L	SVOA	0002F019	
	IR07MW28A	PENTACHLOROPHENOL	25 ND		ug/L	SVOA	0002F020	0002F019
IR-07	IR07MW28A	PHENANTHRENE	10 ND	300	ug/L	SVOA	0002F019	<u> </u>
IR-07	IR07MW28A	PHENANTHRENE	10 ND	300	ug/L	SVOA	0002F020	0002F019
IR-07	IR07MW28A	PHENOL	10 ND		ug/L	SVOA	0002F019	
IR-07	IR07MW28A	PHENOL	10 ND		ug/L	SVOA	0002F020	0002F019
IR-07	IR07MW28A	POTASSIUM	16,100	<u> </u>	ug/L	DMETAL	0002F019	
IR-07	IR07MW28A	POTASSIUM	16,200		ug/L	DMETAL	0002F020	0002F019
IR-07	IR07MW28A	PROPANE, 2-METHOXY-2-METHYL-	5 ND		ug/L	VOA	0002F019	55555545
IR-07	IR07MW28A	PROPANE, 2-METHOXY-2-METHYL-	5 ND		ug/L	VOA	0002F020	0002F019
IR-07	IR07MW28A	PYRENE	10 ND	300	ug/L	SVOA	0002F019	00005010
IR-07	IR07MW28A	PYRENE	10 ND	300	ug/L	SVOA	0002F020	0002F019
IR-07	IR07MW28A	SELENIUM	2.2 ND		ug/L	DMETAL	0002F019 0002F020	0002F019
IR-07	IR07MW28A	SELENIUM	2.2 ND	7.40	ug/L	DMETAL	0002F019	0002F019
IR-07	IR07MW28A	SILVER	1.3 ND	7.43	ug/L	DMETAL DMETAL	0002F019	0002F019
IR-07	IR07MW28A	SILVER	1.3 ND	7.43	ug/L ug/L	DMETAL	0002F020	00021013
IR-07	IR07MW28A	SODIUM	140,000	 	ug/L	DMETAL	0002F020	0002F019
IR-07	IR07MW28A	SODIUM	160,000 10 ND		ug/L	VOA	0002F019	00021 010
IR-07	IR07MW28A	STYRENE	10 ND		ug/L	VOA	0002F020	0002F019
IR-07	IR07MW28A	STYRENE	10 ND			VOA	0002F019	
		TETRACHLOROETHENE	10 ND			VOA	0002F020	0002F019
IR-07	IR07MW28A	TETRACHLOROETHENE THALLIUM	3.2 ND	13	ug/L	DMETAL	0002F019	
IR-07	IR07MW28A		3.2 ND	13	ug/L	DMETAL	0002F020	0002F019
IR-07	IR07MW28A IR07MW28A	THALLIUM	10 ND		ug/L	VOA	0002F019	
		TOLUENE	10 ND		ug/L	VOA	0002F020	0002F019
IR-07 IR-07	IR07MW28A IR07MW28A	TOXAPHENE	0.6 ND	-		PEST	0002F019	
IR-07	IR07MW28A	TOXAPHENE	0.6 ND	_	ug/L	PEST	0002F020	0002F019
IR-07	IR07MW28A	TRANS-1,3-DICHLOROPROPENE	10 ND		ug/L	VOA	0002F019	
IR-07	IR07MW28A	TRANS-1,3-DICHLOROPROPENE	10 ND	-	ug/L.	VOA	0002F020	0002F019
IR-07	IR07MW28A	TRICHLOROETHENE	10_ND	200	ug/L	VOA	0002F019	
IR-07	IR07MW28A	TRICHLOROETHENE	10 ND	200	ug/L	VOA	0002F020	0002F019
IR-07	IR07MW28A	VANADIUM	2.8	-	ug/L	DMETAL	0002F019	
IR-07	IR07MW28A	VANADIUM	1.8 ND		ug/L	DMETAL	0002F020	0002F019
IR-07	IR07MW28A	VINYL CHLORIDE	10 ND	55	ug/L	VOA	0002F019	ļ
IR-07	IR07MW28A	VINYL CHLORIDE	10 ND	55	ug/L	VOA	0002F020	0002F019
IR-07	IR07MW28A	XYLENE (TOTAL)	10 ND		ug/L	VOA	0002F019	1
IR-07	IR07MW28A	XYLENE (TOTAL)	10 ND		ug/L	VOA	0002F020	0002F019
IR-07	IR07MW28A	ZINC	178	81	ug/L	DMETAL	0002F019	
IR-07	IR07MW28A	ZINC	138	81	ug/L	DMETAL	0002F020	0002F019
IR-07	IR07MWS-2	POC MONITORING	WELL		<u> </u>	<u> 1</u>	<u></u>	

IR Site	Monitoring Well ID	Analyte	Analytical Result (ug/L)	Trigger Level (ug/L)	Units		Sample Number	Associated Sample Number
IR-07	IR07MWS-2	1,1,1-TRICHLOROETHANE	10 ND		ug/L	VOA	0002P007	
IR-07	IR07MWS-2	1,1,1-TRICHLOROETHANE	10 ND		ug/L	VOA	0002P008_	0002P007
IR-07	IR07MWS-2	1,1,2,2-TETRACHLOROETHANE	10 ND	<u> </u>	ug/L	VOA	0002P007	ļ
IR-07	IR07MWS-2	1,1,2,2-TETRACHLOROETHANE	10 ND	=	ug/L	VOA	0002P008	0002P007
IR-07	IR07MWS-2	1,1,2-TRICHLOROETHANE	10 ND		ug/L	VOA	0002P007	1
	IR07MWS-2	1,1,2-TRICHLOROETHANE	10 ND		ug/L	VOA	0002P008	0002P007
IR-07	IR07MWS-2	1,1-DICHLOROETHANE	10 ND		ug/L	VOA	0002P007	0000007
IR-07	IR07MWS-2	1,1-DICHLOROETHANE	10 ND		ug/L	VOA	0002P008	0002P007
	IR07MWS-2	1,1-DICHLOROETHENE	10 ND		ug/L	VOA	0002P007	00000007
IR-07	IR07MWS-2	1,1-DICHLOROETHENE	10 ND		ug/L	VOA	0002P008	0002P007
IR-07	IR07MWS-2	1,2-DICHLOROETHANE	10 ND		ug/L	VOA	0002P007	0002P007
IR-07	IR07MWS-2	1,2-DICHLOROETHANE	10 ND	22,400	ug/L	VOA	0002P008 0002P007	10002F007
IR-07	IR07MWS-2	1,2-DICHLOROETHENE (TOTAL)	10 ND	22,400	ug/L	VOA VOA	0002P007	0002P007
	IR07MWS-2	1,2-DICHLOROETHENE (TOTAL)	10 ND	22,400	ug/L ug/L	VOA	0002P008	10002F007
IR-07	IR07MWS-2	1,2-DICHLOROPROPANE	10 ND	 	ug/L	VOA	0002F007	0002P007
IR-07	IR07MWS-2	1,2-DICHLOROPROPANE	10 ND		ug/L	VOA	0002F007	100021 001
IR-07	IR07MWS-2	2-BUTANONE	10 ND		ug/L	VOA	0002P008	0002P007
IR-07	IR07MWS-2	2-BUTANONE	10 ND	 	ug/L	VOA	0002P007	100021 001
IR-07	IR07MWS-2	2-HEXANONE	10 ND	 	ug/L	VOA	0002F008	0002P007
IR-07	IR07MWS-2	2-HEXANONE	10 ND		ug/L	VOA	0002P007	10002. 50.
IR-07	IR07MWS-2	4-METHYL-2-PENTANONE	10 ND		ug/L	VOA	0002P008	0002P007
IR-07	IR07MWS-2	4-METHYL-2-PENTANONE	10 ND	 	ug/L	VOA	0002P007	10002.00.
IR-07	IR07MWS-2	ACETONE	10 ND	 	ug/L	VOA	0002P008	0002P007
IR-07	IR07MWS-2	ACETONE	15.5 ND		ug/L	DMETAL	0002P007	
IR-07	IR07MWS-2	ALUMINUM	15.5 ND			DMETAL	0002P008	0002P007
IR-07	IR07MWS-2	ALUMINUM	11.8	500	ug/L	DMETAL	0002P007	
IR-07	IR07MWS-2	ANTIMONY	10.7 -	500	ug/L	DMETAL	0002P008	0002P007
IR-07 IR-07	IR07MWS-2 IR07MWS-2	ARSENIC	2.5 ND	36	ug/L	DMETAL	0002P007	
IR-07	IR07MWS-2	ARSENIC	2.5 ND	36	ug/L	DMETAL	0002P008	0002P007
IR-07	IR07MWS-2	BARIUM	459	504	ug/L	DMETAL	0002P007	
IR-07	IR07MWS-2	BARIUM	456	504	+	DMETAL	0002P008	0002P007
IR-07	IR07MWS-2	BENZENE	10 ND		ug/L	VOA	0002P007	
IR-07	IR07MWS-2	BENZENE	10 ND		ug/L	VOA	0002P008	0002P007
IR-07	IR07MWS-2	BERYLLIUM	0.16 ND	1.4	ug/L	DMETAL	0002P007	
IR-07	IR07MWS-2	BERYLLIUM	0.23 ND	1.4	ug/L	DMETAL	0002P008	0002P007
IR-07	IR07MWS-2	BROMODICHLOROMETHANE	10 ND		ug/L	VOA	0002P007	
IR-07	IR07MWS-2	BROMODICHLOROMETHANE	10 ND	-	ug/L	VOA	0002P008	0002P007
IR-07	IR07MWS-2	BROMOFORM	10 ND		ug/L	VOA	0002P007	<u> </u>
		BROMOFORM	10 ND		ug/L	VOA	0002P008	0002P007
IR-07	IR07MWS-2	BROMOMETHANE	10 ND			VOA	0002P007	
IR-07	IR07MWS-2	BROMOMETHANE	10 ND		ug/L	VOA	0002P008	0002P007
IR-07	IR07MWS-2	CADMIUM	0.35 ND	9.3	ug/L	DMETAL	0002P007	-
IR-07	IR07MWS-2	CADMIUM	0.71 ND	9.3	ug/L	DMETAL	0002P008	0002P007
IR-07	IR07MWS-2	CALCIUM	440,000		ug/L	DMETAL	0002P007	
IR-07	IR07MWS-2	CALCIUM	432,000 -		ug/L	DMETAL	0002P008	0002P007
IR-07	IR07MWS-2	CARBON DISULFIDE	10 ND		ug/L	AOV	0002P007	
IR-07	IR07MWS-2	CARBON DISULFIDE	10 ND		lug/L	VOA	0002P008	0002P007
IR-07	IR07MWS-2	CARBON TETRACHLORIDE	10 ND		ug/L	VOA	0002P007	00000007
IR-07	IR07MWS-2	CARBON TETRACHLORIDE	10 ND	<u> </u>	ug/L	VOA	0002P008	0002P007
IR-07	IR07MWS-2	CHLOROBENZENE	10 ND		lug/L	VOA	0002P007	00020007
IR-07	IR07MWS-2	CHLOROBENZENE	10 ND	 	lug/L	VOA	0002P008	0002P007
IR-07	IR07MWS-2	CHLOROETHANE	10 ND	ļ	ug/L	VOA	0002P007	00078007
	IR07MWS-2	CHLOROETHANE	10 ND	 -		VOA	0002P008	0002P007
IR-07	IR07MWS-2	CHLOROFORM	10 ND		ug/L	VOA	0002P007	0002P007
IR-07	IR07MWS-2	CHLOROFORM	10 ND	 -	ug/L	VOA	0002P008	100021:007
IR-07	IR07MWS-2	CHLOROMETHANE	10 ND		ug/L	VOA VOA	0002P007 0002P008	0002P007
IR-07	IR07MWS-2	CHLOROMETHANE	10 ND	15.7	ug/L ug/L	DMETAL	0002P008	100021 001
IR-07	IR07MWS-2	CHROMIUM	1 ND	1 15 (1 L1C1/1.	I DIVIC (AL	100027001	1

IR Site	Monitoring Well ID	Analyte	Analytical Result (ug/L)	Trigger Level (ug/L)	Units	Analytical Group	Sample Number	Associated Sample Number
IR-07	IR07MWS-2	CHROMIUM VI	10 ND		ug/L	CHROM	0002P007	100000007
IR-07	IR07MWS-2	CHROMIUM VI	10 ND		ug/L	CHROM	0002P008	0002P007
	IR07MWS-2	CIS-1,3-DICHLOROPROPENE	10 ND		ug/L	VOA	0002P007	0002P007
IR-07	IR07MWS-2	CIS-1,3-DICHLOROPROPENE	10 ND		ug/L	VOA	0002P008 0002P007	10002P007
IR-07	IR07MWS-2	COBALT	3.6 ND	20.8	ug/L	DMETAL DMETAL	0002P007	0002P007
	IR07MWS-2	COBALT	4.4 ND	20.8	+	DMETAL	0002P008	00021001
IR-07	IR07MWS-2	COPPER	10.5	28	ug/L	DMETAL	0002P008	0002P007
IR-07	IR07MWS-2	COPPER	7.1 10 ND	28	ug/L ug/L	VOA	0002P007	00021 001
	IR07MWS-2	DIBROMOCHLOROMETHANE	10 ND		ug/L	VOA	0002F007	0002P007
	IR07MWS-2	DIBROMOCHLOROMETHANE	100 ND	1,250	ug/L	TPHEXT	0002P007	90027 007
IR-07	IR07MWS-2	DIESEL RANGE ORGANICS	100 ND	1,250	ua/L	TPHEXT	0002P008	0002P007
	IR07MWS-2	DIESEL RANGE ORGANICS	100 ND	1,230	ug/L	VOA	0002P007	19902, 007
IR-07	IR07MWS-2	ETHYLBENZENE	10 ND		ug/L	VOA	0002P008	0002P007
IR-07	IR07MWS-2	ETHYLBENZENE	50 ND	1,250	ug/L	TPHPRG	0002P007	1
IR-07	IR07MWS-2	GASOLINE RANGE ORGANICS	50 ND	1,250	ug/L	TPHPRG	0002P008	0002P007
IR-07	IR07MWS-2	GASOLINE RANGE ORGANICS	856	1,200		DMETAL	0002P007	1
IR-07	IR07MWS-2	IRON	641 -		ug/L	DMETAL	0002P008	0002P007
IR-07	IR07MWS-2	IRON	1.3 ND	14.4	ug/L	DMETAL	0002P007	10002: 00:
	IR07MWS-2	LEAD	1.3 ND	14.4		DMETAL	0002P008	0002P007
IR-07	IR07MWS-2	LEAD	695.000	14.4	+	DMETAL	0002F007	00027 007
IR-07_	IR07MWS-2	MAGNESIUM			ug/L	DMETAL	0002P008	0002P007
IR-07	IR07MWS-2	MAGNESIUM		8,140	ug/L	DMETAL	0002P007	100021 001
IR-07	IR07MWS-2	MANGANESE	835 820	8,140	ug/L	DMETAL	0002P008	0002P007
	IR07MWS-2	MANGANESE	0.12 ND	0.6	ug/L	DMETAL	0002P007	100027 007
IR-07	IR07MWS-2	MERCURY	0.12 ND	0.6	ug/L	DMETAL	0002P008	0002P007
IR-07	IR07MWS-2	MERCURY	10 ND		ug/L	VOA	0002P007	100021-0-1
IR-07	IR07MWS-2	METHYLENE CHLORIDE	10 ND		ug/L	VOA	0002P008	0002P007
IR-07	IR07MWS-2	METHYLENE CHLORIDE	7.9		ug/L	DMETAL	0002P007	1900
IR-07	IR07MWS-2	MOLYBDENUM	6.4 -		ug/L	DMETAL	0002P008	0002P007
IR-07	IR07MWS-2	MOLYBDENUM	200 -		ug/L	TPHEXT	0002P007	1333333
IR-07	IR07MWS-2	MOTOR OIL RANGE ORGANICS MOTOR OIL RANGE ORGANICS	300 -			TPHEXT	0002P008	0002P007
IR-07	IR07MWS-2		48.9 -	96.5	ug/L	DMETAL	0002P007	
IR-07	IR07MWS-2	NICKEL NICKEL	49.6 -	96.5	ug/L	DMETAL	0002P008	0002P007
IR-07	IR07MWS-2 IR07MWS-2	POTASSIUM	225,000		ug/L	DMETAL	0002P007	
IR-07 IR-07	IR07MWS-2	POTASSIUM	191,000		ug/L	DMETAL	0002P008	0002P007
IR-07	IR07MWS-2	PROPANE, 2-METHOXY-2-METHYL-	5 ND		ug/L	VOA	0002P007	
IR-07	IR07MWS-2	PROPANE, 2-METHOXY-2-METHYL-	5 ND		ug/L	VOA	0002P008	0002P007
	IR07MWS-2	SELENIUM	2.5 ND	-	ug/L	DMETAL	0002P007	
	IR07MWS-2		2.5 ND	-	ug/L	DMETAL	0002P008	0002P007
	IR07MWS-2	SILVER	3.1 -	7.43	ug/L	DMETAL	0002P007	
IR-07	IR07MWS-2	SILVER	1 ND	7.43	ug/L	DMETAL	0002P008	0002P007
	IR07MWS-2	SODIUM	4,610,000	-	ug/L	DMETAL	0002P007	Ι
	IR07MWS-2	SODIUM	4,910,000	-	ug/L	DMETAL	0002P008	0002P007
IR-07	IR07MWS-2	STYRENE	10 ND	_	ug/L	VOA	0002P007	
IR-07	IR07MWS-2	STYRENE	10 ND		ug/L	VOA	0002P008	0002P007
IR-07	IR07MWS-2	TETRACHLOROETHENE	10 ND		ug/L	VOA	0002P007	J
IR-07	IR07MWS-2	TETRACHLOROETHENE	10 ND		ug/L	VOA	0002P008	0002P007
IR-07	IR07MWS-2	THALLIUM	12.5 ND	13	ug/L	DMETAL.	0002P007	
IR-07	IR07MWS-2	THALLIUM	7.5 ND	13	ug/L	DMETAL	0002P008	0002P007
IR-07	IR07MWS-2	TOLUENE	10 ND		ug/L	VOA	0002P007	<u> </u>
	IR07MWS-2	TOLUENE	10 ND		ug/L	VOA	0002P008	0002P007
IR-07	IR07MWS-2	TRANS-1,3-DICHLOROPROPENE	10 ND		ug/L	VOA	0002P007	
IR-07	IR07MWS-2	TRANS-1,3-DICHLOROPROPENE	10 ND		ug/L	VOA	0002P008	0002P007
IR-07	IR07MWS-2	TRICHLOROETHENE	10 ND	200	ug/L	VOA	0002P007	
IR-07	IR07MWS-2	TRICHLOROETHENE	10 ND	200	ug/L	VOA	0002P008	0002P007
IR-07	IR07MWS-2	VANADIUM	1.8 ND		ug/L	DMETAL	0002P007	
IR-07	IR07MWS-2	VANADIUM	1.8 ND		ug/L	DMETAL	0002P008	0002P007
IR-07	IR07MWS-2	VINYL CHLORIDE	10 ND	55	ug/L	VOA	0002P007	
IR-07	IR07MWS-2	VINYL CHLORIDE	10 ND	55	ug/L	VOA	0002P008	0002P007

IR Site	Monitoring Well ID	Analyte	Analytical Result (ug/L)	Trigger Level (ug/L)	Units	Analytical Group	Sample Number	Associated Sample Number
IR-07	IR07MWS-2	XYLENE (TOTAL)	10 ND		ug/L	VOA	0002P007	
IR-07	IR07MWS-2	XYLENE (TOTAL)	10 ND		ug/L	VOA	0002P008	0002P007
IR-07	IR07MWS-2	ZINC	110	81	ug/L	DMETAL	0002P007	
IR-07	IR07MWS-2	ZINC	112 -	81	ug/L	DMETAL	0002P008	0002P007
IR-07	IR07MWS-4	POC MONITORING WEL					2222222	+
IR-07	IR07MWS-4	1,1,1-TRICHLOROETHANE	10 ND		ug/L	VOA	0002P009	
IR-07	IR07MWS-4	1,1,2,2-TETRACHLOROETHANE	10_ND		ug/L	VOA	0002P009	
IR-07	IR07MWS-4	1,1,2-TRICHLOROETHANE	10 ND		ug/L	VOA	0002P009	
IR-07	IR07MWS-4	1,1-DICHLOROETHANE	10 ND		ug/L	VOA	0002P009 0002P009	
IR-07	IR07MWS-4	1,1-DICHLOROETHENE	10 ND	-	ug/L	VOA VOA	0002P009	
IR-07	IR07MWS-4	1,2-DICHLOROETHANE	10 ND		ug/L ug/L	VOA	0002P009	
IR-07	IR07MWS-4	1,2-DICHLOROETHENE (TOTAL)	10 ND	22,400		VOA	0002F009	
IR-07	IR07MWS-4	1,2-DICHLOROPROPANE	10 ND		ug/L ug/L	VOA	0002P009	
IR-07	IR07MWS-4	2-BUTANONE	10 ND		ug/L	VOA	0002P009	
IR-07	IR07MWS-4	2-HEXANONE	10 ND		ug/L	VOA	0002P009	
IR-07	IR07MWS-4	4-METHYL-2-PENTANONE	10 ND		ug/L	VOA	0002P009	
IR-07	IR07MWS-4	ACETONE	15.5 ND		ug/L	DMETAL	0002P009	
IR-07	IR07MWS-4	ALUMINUM	5.4	500	ug/L	DMETAL	0002P009	
IR-07	IR07MWS-4	ANTIMONY	2.5 ND	36	ug/L	DMETAL	0002P009	<u> </u>
IR-07	IR07MWS-4	ARSENIC	716	504	ug/L	DMETAL	0002P009	† · · · · · · · · · · · · · · · · · · ·
IR-07	IR07MWS-4	BENZENE	10 ND	-	ug/L	VOA	0002P009	
IR-07	IR07MWS-4	BERYLLIUM	0.11 ND	1.4	ug/L	DMETAL	0002P009	
IR-07	IR07MWS-4 IR07MWS-4	BROMODICHLOROMETHANE	10 ND		ug/L	VOA	0002P009	
IR-07	IR07MWS-4	BROMOFORM	10 ND		ug/L	VOA	0002P009	
IR-07 IR-07	IR07MWS-4	BROMOMETHANE	10 ND		ug/L	VOA	0002P009	
IR-07	IR07MWS-4	CADMIUM	0.88 ND	9.3	ug/L	DMETAL	0002P009	
IR-07	IR07MWS-4	CALCIUM	160,000	-	ug/L	DMETAL	0002P009	
IR-07	IR07MW\$-4	CARBON DISULFIDE	10 ND	-	ug/L	VOA	0002P009	
IR-07	IR07MWS-4	CARBON TETRACHLORIDE	10 ND		ug/L	VOA	0002P009	
IR-07	IR07MWS-4	CHLOROBENZENE	10 ND		ug/L	VOA	0002P009	
IR-07	IR07MWS-4	CHLOROETHANE	10 ND		ug/L	VOA	0002P009	
IR-07	IR07MWS-4	CHLOROFORM	10 ND	_	ug/L	VOA	0002P009	
IR-07	IR07MWS-4	CHLOROMETHANE	10 ND		ug/L	VOA	0002P009	
IR-07	IR07MWS-4	CHROMIUM	16.4	15.7	ug/L	DMETAL	0002P009	
IR-07	IR07MWS-4	CHROMIUM VI	10		ug/L	CHROM	0002P009	
IR-07	IR07MWS-4	CIS-1,3-DICHLOROPROPENE	10 ND		ug/L	VOA	0002P009	<u> </u>
IR-07	IR07MWS-4	COBALT	1.4_ND	20.8	ug/L	DMETAL	0002P009	
IR-07	IR07MWS-4	COPPER	2	28	ug/L	DMETAL	0002P009	
IR-07	IR07MWS-4	DIBROMOCHLOROMETHANE	10 ND		ug/L	VOA	0002P009	
IR-07	IR07MWS-4	DIESEL RANGE ORGANICS	100 ND	1,250	1	TPHEXT	0002P009	
IR-07	IR07MWS-4	ETHYLBENZENE	. 10 ND		ug/L	VOA	0002P009	1
IR-07	IR07MWS-4	GASOLINE RANGE ORGANICS	50 ND	1,250	ug/L	TPHPRG	0002P009	
IR-07	IR07MWS-4	IRON	375 –	-	ug/L	DMETAL_	0002P009	
IR-07	IR07MWS-4	LEAD	1.3 ND	14.4	ug/L	DMETAL	0002P009	
IR-07	IR07MWS-4	MAGNESIUM	489,000		ug/L	DMETAL	0002P009	
IR-07	IR07MWS-4	MANGANESE	352	8,140	ug/L	DMETAL_	0002P009	1
IR-07	IR07MWS-4	MERCURY	0.1 ND	0.6	ug/L	DMETAL	0002P009 0002P009	
IR-07	IR07MWS-4	METHYLENE CHLORIDE	10 ND	 _	ug/L	DMETAL	0002P009	
IR-07	IR07MWS-4	MOLYBDENUM	9.8		ug/L ug/L	TPHEXT	0002P009	
IR-07	IR07MWS-4	MOTOR OIL RANGE ORGANICS	200	96.5	ug/L ug/L	DMETAL	0002P009	
IR-07	IR07MWS-4	NICKEL	36.2		ug/L	DMETAL	0002F009	1
IR-07	IR07MWS-4	POTASSIUM	187,000		ug/L ug/L	VOA	0002F009	1
IR-07	IR07MWS-4	PROPANE, 2-METHOXY-2-METHYL-	5 ND		ug/L	DMETAL	0002F009	
IR-07	IR07MWS-4	SELENIUM	2.5 ND 1 ND	7.43	ug/L	DMETAL	0002F009	1
IR-07	IR07MWS-4	SILVER	3,680,000	7.43	ug/L	DMETAL	0002P009	
IR-07	IR07MWS-4	SODIUM	3,680,000 == 10 ND		ug/L	VOA	0002P009	
IR-07	IR07MWS-4	STYRENE TETRACHI OPOETHENE	10 ND	- -	ug/L	VOA	0002P009	
IR-07	IR07MWS-4	TETRACHLOROETHENE THALLIUM	6.7 ND	13	ug/L	DMETAL	0002P009	

	Ē			Trigger				Associated
IR Site	Monitoring Well ID	Analyte	Analytical Result (ug/L)	Level (ug/L)	Units	Analytical Group	Sample Number	Sample Number
IR-07	IR07MWS-4	TOLUENE	10 ND	-	ug/L	VOA	0002P009	
IR-07	IR07MWS-4	TRANS-1,3-DICHLOROPROPENE	10 ND	-	ug/L	VOA	0002P009	
IR-07	IR07MWS-4	TRICHLOROETHENE	10 ND	200	ug/L	VOA	0002P009	
IR-07	IR07MWS-4	VANADIUM	4.4		ug/L	DMETAL	0002P009	
IR-07	IR07MWS-4	VINYL CHLORIDE	10 ND	55	ug/L	VOA	0002P009	
IR-07	IR07MWS-4	XYLENE (TOTAL)	10 ND		ug/L	VOA	0002P009	
IR-07	IR07MWS-4	ZINC	227	81	ug/L	DMETAL	0002P009	
IR-10	IR10MW28A	SENTINEL MONITORING V		,				
IR-10	IR10MW28A	1,1,1-TRICHLOROETHANE	2 ND		ug/L	LVOA	0002F009	
IR-10	IR10MW28A	1,1,2,2-TETRACHLOROETHANE	2 ND			LVOA	0002F009	
IR-10	IR10MW28A	1,1,2-TRICHLOROETHANE	2 ND			LVOA	0002F009	
IR-10	IR10MW28A	1,1-DICHLOROETHANE	2 ND			LVOA	0002F009	
IR-10	IR10MW28A	1,1-DICHLOROETHENE	2 ND			LVOA	0002F009	
IR-10	IR10MW28A	1,2,4-TRICHLOROBENZENE	2 ND			LVOA	0002F009	
IR-10	IR10MW28A	1,2-DIBROMO-3-CHLOROPROPANE	2 ND			LVOA	0002F009	
IR-10	IR10MW28A	1,2-DIBROMOETHANE	2 ND		-	LVOA	0002F009	
	IR10MW28A	1,2-DICHLOROBENZENE	2 ND			LVOA	0002F009	
IR-10	IR10MW28A	1,2-DICHLOROETHANE	1 ND			LVOA	0002F009	
IR-10	IR10MW28A	1,2-DICHLOROPROPANE	2 ND	-		LVOA	0002F009	
IR-10	IR10MW28A	1,3-DICHLOROBENZENE	2 ND				0002F009	
IR-10	IR10MW28A	1,4-DICHLOROBENZENE	2 ND			LVOA	0002F009	
IR-10	IR10MW28A	2-BUTANONE	10 ND		ug/L	LVOA	0002F009	
IR-10	IR10MW28A	2-HEXANONE	10 ND	-	ug/L	LVOA	0002F009	
IR-10	IR10MW28A	4-METHYL-2-PENTANONE	10 ND		ug/L	LVOA	0002F009	
IR-10	IR10MW28A	ACETONE	10 ND	-		LVOA	0002F009	
IR-10	IR10MW28A	ALUMINUM	15.5 ND				0002F009A	
IR-10	IR10MW28A	ANTIMONY	7.1	5,000	- Y		0002F009A	
IR-10	IR10MW28A	ARSENIC	2.5 ND	360	-		0002F009A	
IR-10	IR10MW28A	BARIUM	854 —	5,040			0002F009A	
IR-10	IR10MW28A	BENZENE	1 ND		-		0002F009	
$\overline{}$	IR10MW28A	BERYLLIUM	0.1 ND	14			0002F009A	
		BROMOCHLOROMETHANE	2 ND				0002F009	
		BROMODICHLOROMETHANE	2 ND				0002F009	
		BROMOFORM	2 ND	-			0002F009	
-		BROMOMETHANE	2 ND	-			0002F009	,
	IR10MW28A	CADMIUM	0.2 ND	93			0002F009A	
		CALCIUM	78,700	-			0002F009A	
	IR10MW28A	CARBON DISULFIDE	2 ND	-	_		0002F009	
		CARBON TETRACHLORIDE	1 ND		_		0002F009 0002F009	
		CHLOROBENZENE	2 ND				0002F009 0002F009	
		CHLOROETHANE	2 ND	<u> </u>	_		0002F009	
		CHLOROFORM	2 ND				0002F009	
	IR10MW28A	CHLOROMETHANE	2 ND 1 ND	157			0002F009A	
	IR10MW28A	CHROMIUM	10 ND	- 157			0002F009A	
		CHROMIUM VI	0.6	224,000	_		0002F009	
		CIS-1,2-DICHLOROETHENE	2 ND		-		0002F009	
	IR10MW28A	CIS-1,3-DICHLOROPROPENE	1.3 ND	208	_		0002F009A	
		CORRER	2.2 ND	280	_		0002F009A	
		COPPER DIBROMOCHLOROMETHANE	2 ND			1	0002F009	
		DIESEL RANGE ORGANICS	100 ND	1,250	_		0002F009A	
		ETHYLBENZENE	2 ND				0002F009	
		GASOLINE RANGE ORGANICS	50 ND	1,250			0002F009A	
			482				0002F009A	
	-	IRON LEAD	1.3 ND	144			0002F009A	
		MAGNESIUM	514,000				0002F009A	
		MANGANESE	26.6 -	81,400	_		0002F009A	
		MERCURY	0.19 ND	6	_		0002F009A	
		METHYLENE CHLORIDE	4 ND				0002F009	
		MOLYBDENUM	4.9 ND		_		0002F009A	
in-10	IINTOIVIVVZOA	INIOLIUDLINOM	7.0 110		- 1]		

IR Site		Analyte	Analytical Result (ug/L)	Trigger Level (ug/L)	Units		Sample Number	Associated Sample Number
	IR10MW28A	MOTOR OIL RANGE ORGANICS	200 ND		ug/L	TPHEXT DMETAL	0002F009A	
IR-10	IR10MW28A	NICKEL	7.3 -	965	ug/L ug/L	DMETAL	0002F009A 0002F009A	
		POTASSIUM	1,840 2 ND		ug/L	LVOA	0002F009	
IR-10	IR10MW28A	PROPANE, 2-METHOXY-2-METHYL-	2.2 ND		ug/L	DMETAL	0002F009A	
IR-10 IR-10	IR10MW28A IR10MW28A	SELENIUM SILVER	1.3 ND	74.3	ug/L	DMETAL	0002F009A	
IR-10	IR10MW28A	SODIUM	185,000		ug/L	DMETAL	0002F009A	
IR-10	IR10MW28A	STYRENE	2 ND		ug/L	LVOA	0002F009	
IR-10	IR10MW28A	TETRACHLOROETHENE	2 ND		ug/L	LVOA	0002F009	
	IR10MW28A	THALLIUM	3.2 ND	130	ug/L	DMETAL	0002F009A	
	IR10MW28A	TOLUENE	2 ND		ug/L	LVOA	0002F009	
IR-10	IR10MW28A	TRANS-1,2-DICHLOROETHENE	2 ND	224,000	ug/L	LVOA	0002F009	
		TRANS-1,3-DICHLOROPROPENE	1 ND		ug/L	LVOA	0002F009	
	IR10MW28A	TRICHLOROETHENE	40	2,000	ug/L	LVOA	0002F009	
IR-10	IR10MW28A	VANADIUM	4.2		ug/L	DMETAL	0002F009A	
IR-10	IR10MW28A	VINYL CHLORIDE	1 ND	55	ug/L	LVOA	0002F009	
IR-10	IR10MW28A	XYLENE (TOTAL)	2 ND	-	ug/L	LVOA	0002F009	<u> </u>
IR-10	IR10MW28A	ZINC	208	810	ug/L	DMETAL	0002F009A	ļ <u> </u>
IR-10	IR10MW31A1	POC MONITORING WEL	<u></u>		L			<u> </u>
IR-10	IR10MW31A1	1,1,1-TRICHLOROETHANE	1 ND		ug/L	LVOA	0002F010	
IR-10	IR10MW31A1	1,1,2,2-TETRACHLOROETHANE	1 ND		ug/L	LVOA	0002F010	
IR-10	IR10MW31A1	1,1,2-TRICHLOROETHANE	1 ND		ug/L	LVOA	0002F010	
IR-10	IR10MW31A1	1,1-DICHLOROETHANE	1 ND		ug/L	LVOA .	0002F010	ļ <u>.</u>
IR-10	IR10MW31A1	1,1-DICHLOROETHENE	1 ND		ug/L	LVOA	0002F010	
IR-10	IR10MW31A1	1,2,4-TRICHLOROBENZENE	1 ND		ug/L	LVOA	0002F010	
IR-10		1,2-DIBROMO-3-CHLOROPROPANE	1 ND		ug/L	LVOA	0002F010	
IR-10		1,2-DIBROMOETHANE	1 ND		ug/L	LVOA	0002F010	
IR-10		1,2-DICHLOROBENZENE	1 ND		ug/L	LVOA	0002F010	
IR-10		1,2-DICHLOROETHANE	0.5 ND		ug/L	LVOA LVOA	0002F010 0002F010	
IR-10		1,2-DICHLOROPROPANE	1 ND 1 ND		ug/L ug/L	LVOA	0002F010	
IR-10		1,3-DICHLOROBENZENE	1 ND			LVOA	0002F010	
IR-10		1,4-DICHLOROBENZENE	5 ND		ug/L	LVOA	0002F010	
IR-10		2-BUTANONE	5 ND			LVOA	0002F010	
IR-10 IR-10		2-HEXANONE 4-METHYL-2-PENTANONE	5 ND	_		LVOA	0002F010	
IR-10	IR10MW31A1		5 ND		ug/L	LVOA	0002F010	
	IR10MW31A1		15.5 ND		ug/L	DMETAL	0002F010	
IR-10	IR10MW31A1		3.8	500	ug/L	DMETAL	0002F010	
IR-10	IR10MW31A1		2.5 ND	36	ug/L	DMETAL	0002F010	
	IR10MW31A1		705	504	ug/L	DMETAL	0002F010	
	IR10MW31A1		0.5 ND		ug/L	LVOA	0002F010	
IR-10	IR10MW31A1		0.1 ND	1.4	ug/L	DMETAL	0002F010	
IR-10	IR10MW31A1	BROMOCHLOROMETHANE	1 ND			LVOA	0002F010	<u> </u>
IR-10	IR10MW31A1	BROMODICHLOROMETHANE	1 ND	<u> </u>		LVOA	0002F010	
IR-10	IR10MW31A1	BROMOFORM	1 ND			LVOA	0002F010	
IR-10	IR10MW31A1	BROMOMETHANE	1 ND	<u> </u>		LVOA	0002F010	
IR-10	IR10MW31A1	CADMIUM	0.39 ND	9.3	+-	DMETAL	0002F010	
IR-10	IR10MW31A1	CALCIUM	217,000		ug/L	DMETAL	0002F010	
IR-10		CARBON DISULFIDE	1 ND			LVOA	0002F010	
IR-10		CARBON TETRACHLORIDE	0.5 ND		lug/L	LVOA	0002F010	
IR-10		CHLOROBENZENE	1 ND		 	LVOA LVOA	0002F010 0002F010	
		CHLOROETHANE	1 ND		ug/L ug/L	LVOA	0002F010	
IR-10		CHLOROFORM	1 ND			LVOA	0002F010	
IR-10		CHLOROMETHANE	1 ND	15.7		DMETAL	0002F010	
IR-10	IR10MW31A1	 	1.8 ND 10 ND	15.7	ug/L	CHROM	0002F010	<u> </u>
IR-10		CHROMIUM VI	1 ND	22,400	ug/L	LVOA	0002F010	
IR-10		CIS-1,2-DICHLOROETHENE	1 ND		ug/L	LVOA	0002F010	
IR-10		CIS-1,3-DICHLOROPROPENE	1.5 ND	20.8	ug/L	DMETAL	0002F010	
IR-10 IR-10	IR10MW31A1	COPPER	6.5	28	ug/L	DMETAL	0002F010	

IR Site		Analyte	Analytical Result (ug/L)	Trigger Level (ug/L)	Units	Analytical Group LVOA	Sample Number 0002F010	Associated Sample Number
IR-10		DIBROMOCHLOROMETHANE	1 ND	4 050	ug/L	TPHEXT	0002F010	
IR-10		DIESEL RANGE ORGANICS	100 ND	1,250	ug/L	LVOA	0002F010	
IR-10		ETHYLBENZENE	1 ND 50 ND	1,250	ug/L ug/L	TPHPRG	0002F010	
IR-10		GASOLINE RANGE ORGANICS	50 ND	1,230	ug/L	DMETAL	0002F010	
IR-10	IR10MW31A1 IR10MW31A1	LEAD	1.3 ND	14.4	ug/L	DMETAL	0002F010	
IR-10 IR-10	IR10MW31A1		460,000		ug/L	DMETAL	0002F010	
IR-10		MANGANESE	529 ~	8,140	ug/L	DMETAL	0002F010	
IR-10	IR10MW31A1		0.1 ND	0.6	ug/L	DMETAL	0002F010	
IR-10		METHYLENE CHLORIDE	2 ND	-	ug/L	LVOA	0002F010	
IR-10		MOLYBDENUM	9.8	-	ug/L	DMETAL	0002F010	
IR-10		MOTOR OIL RANGE ORGANICS	100 ND	_	ug/L	TPHEXT	0002F010	
IR-10	IR10MW31A1		14	96.5	ug/L	DMETAL	0002F010	
IR-10	IR10MW31A1	POTASSIUM	78,400		ug/L	DMETAL	0002F010	
IR-10	IR10MW31A1	PROPANE, 2-METHOXY-2-METHYL-	1 ND		ug/L	LVOA	0002F010	
IR-10	IR10MW31A1	SELENIUM	2.5 ND		ug/L	DMETAL	0002F010	
IR-10	IR10MW31A1	SILVER	3.2	7.43	ug/L	DMETAL	0002F010	
IR-10	IR10MW31A1	SODIUM	2,670,000	=_	ug/L	DMETAL	0002F010	
IR-10	IR10MW31A1		1 ND		ug/L	LVOA	0002F010	
IR-10	IR10MW31A1	TETRACHLOROETHENE	1 ND		ug/L	LVOA	0002F010	
IR-10	IR10MW31A1		6.2 ND	13	ug/L	DMETAL	0002F010	
IR-10	IR10MW31A1		1 ND		ug/L	LVOA	0002F010	
IR-10		TRANS-1,2-DICHLOROETHENE	1 ND	22,400	ug/L	LVOA	0002F010	
IR-10		TRANS-1,3-DICHLOROPROPENE	0.5 ND		ug/L	LVOA	0002F010	
IR-10		TRICHLOROETHENE	1 ND	200	ug/L	LVOA	0002F010	
IR-10		VANADIUM	4.6 -		ug/L	DMETAL	0002F010	l — — — — —
IR-10		VINYL CHLORIDE	0.5 ND	55	ug/L	LVOA	0002F010 0002F010	
IR-10		XYLENE (TOTAL)	1 ND	81	ug/L ug/L	DMETAL	0002F010	
IR-10	IR10MW31A1		162	01	ug/L	DIVIETAL	00021 010	
IR-10	IR10MW33A	VOC MONITORING WEL	1 ND		ug/L	LVOA	0002P004	
IR-10	IR10MW33A	1,1,1-TRICHLOROETHANE 1,1,2,2-TETRACHLOROETHANE	1 ND		ug/L	LVOA	0002P004	
IR-10 IR-10	IR10MW33A IR10MW33A	1,1,2-TRICHLOROETHANE	1 ND	-	ug/L	LVOA	0002P004	
IR-10	IR10MW33A		1 ND		ug/L	LVOA	0002P004	
		I 1 1-DICHI OROETHANE		-				
		1,1-DICHLOROETHANE	1 ND		ug/L	LVOA	0002P004	
IR-10	IR10MW33A	1,1-DICHLOROETHENE			ug/L ug/L	LVOA LVOA	0002P004 0002P004	
IR-10 IR-10	IR10MW33A IR10MW33A	1,1-DICHLOROETHENE 1,2,4-TRICHLOROBENZENE	1 ND					
IR-10 IR-10 IR-10	IR10MW33A IR10MW33A IR10MW33A	1,1-DICHLOROETHENE	1 ND 1 ND		ug/L	LVOA	0002P004 0002P004 0002P004	
IR-10 IR-10	IR10MW33A IR10MW33A IR10MW33A IR10MW33A	1,1-DICHLOROETHENE 1,2,4-TRICHLOROBENZENE 1,2-DIBROMO-3-CHLOROPROPANE	1 ND 1 ND 1 ND		ug/L ug/L	LVOA LVOA	0002P004 0002P004 0002P004 0002P004	
IR-10 IR-10 IR-10 IR-10	IR10MW33A IR10MW33A IR10MW33A IR10MW33A IR10MW33A	1,1-DICHLOROETHENE 1,2,4-TRICHLOROBENZENE 1,2-DIBROMO-3-CHLOROPROPANE 1,2-DIBROMOETHANE	1 ND 1 ND 1 ND 1 ND		ug/L ug/L ug/L ug/L ug/L	LVOA LVOA LVOA LVOA	0002P004 0002P004 0002P004 0002P004 0002P004	
IR-10 IR-10 IR-10 IR-10 IR-10	IR10MW33A IR10MW33A IR10MW33A IR10MW33A IR10MW33A IR10MW33A	1,1-DICHLOROETHENE 1,2,4-TRICHLOROBENZENE 1,2-DIBROMO-3-CHLOROPROPANE 1,2-DIBROMOETHANE 1,2-DICHLOROBENZENE	1 ND 1 ND 1 ND 1 ND 1 ND	 	ug/L ug/L ug/L ug/L ug/L ug/L	LVOA LVOA LVOA LVOA LVOA	0002P004 0002P004 0002P004 0002P004 0002P004	
IR-10 IR-10 IR-10 IR-10 IR-10	IR10MW33A IR10MW33A IR10MW33A IR10MW33A IR10MW33A IR10MW33A	1,1-DICHLOROETHENE 1,2,4-TRICHLOROBENZENE 1,2-DIBROMO-3-CHLOROPROPANE 1,2-DIBROMOETHANE 1,2-DICHLOROBENZENE 1,2-DICHLOROETHANE	1 ND	 	ug/L ug/L ug/L ug/L ug/L ug/L ug/L	LVOA LVOA LVOA LVOA LVOA LVOA	0002P004 0002P004 0002P004 0002P004 0002P004 0002P004 0002P004	
IR-10 IR-10 IR-10 IR-10 IR-10 IR-10	IR10MW33A IR10MW33A IR10MW33A IR10MW33A IR10MW33A IR10MW33A IR10MW33A IR10MW33A	1,1-DICHLOROETHENE 1,2,4-TRICHLOROBENZENE 1,2-DIBROMO-3-CHLOROPROPANE 1,2-DIBROMOETHANE 1,2-DICHLOROBENZENE 1,2-DICHLOROETHANE 1,2-DICHLOROPROPANE	1 ND		ug/L ug/L ug/L ug/L ug/L ug/L ug/L	LVOA LVOA LVOA LVOA LVOA LVOA LVOA	0002P004 0002P004 0002P004 0002P004 0002P004 0002P004 0002P004 0002P004	
IR-10 IR-10 IR-10 IR-10 IR-10 IR-10 IR-10	IR10MW33A IR10MW33A IR10MW33A IR10MW33A IR10MW33A IR10MW33A IR10MW33A IR10MW33A	1,1-DICHLOROETHENE 1,2,4-TRICHLOROBENZENE 1,2-DIBROMO-3-CHLOROPROPANE 1,2-DIBROMOETHANE 1,2-DICHLOROBENZENE 1,2-DICHLOROETHANE 1,2-DICHLOROPROPANE 1,3-DICHLOROBENZENE	1 ND		ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	LVOA LVOA LVOA LVOA LVOA LVOA LVOA LVOA	0002P004 0002P004 0002P004 0002P004 0002P004 0002P004 0002P004 0002P004 0002P004	
IR-10 IR-10 IR-10 IR-10 IR-10 IR-10 IR-10 IR-10	IR10MW33A IR10MW33A IR10MW33A IR10MW33A IR10MW33A IR10MW33A IR10MW33A IR10MW33A	1,1-DICHLOROETHENE 1,2,4-TRICHLOROBENZENE 1,2-DIBROMO-3-CHLOROPROPANE 1,2-DIBROMOETHANE 1,2-DICHLOROBENZENE 1,2-DICHLOROETHANE 1,2-DICHLOROPROPANE 1,3-DICHLOROBENZENE 1,4-DICHLOROBENZENE 1,4-DICHLOROBENZENE	1 ND		ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	LVOA LVOA LVOA LVOA LVOA LVOA LVOA LVOA	0002P004 0002P004 0002P004 0002P004 0002P004 0002P004 0002P004 0002P004 0002P004 0002P004	
IR-10 IR-10 IR-10 IR-10 IR-10 IR-10 IR-10 IR-10 IR-10	IR10MW33A IR10MW33A IR10MW33A IR10MW33A IR10MW33A IR10MW33A IR10MW33A IR10MW33A IR10MW33A	1,1-DICHLOROETHENE 1,2,4-TRICHLOROBENZENE 1,2-DIBROMO-3-CHLOROPROPANE 1,2-DIBROMOETHANE 1,2-DICHLOROBENZENE 1,2-DICHLOROETHANE 1,2-DICHLOROPROPANE 1,3-DICHLOROBENZENE 1,4-DICHLOROBENZENE 2-BUTANONE	1 ND		ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	LVOA LVOA LVOA LVOA LVOA LVOA LVOA LVOA	0002P004 0002P004 0002P004 0002P004 0002P004 0002P004 0002P004 0002P004 0002P004 0002P004 0002P004	
IR-10 IR-10 IR-10 IR-10 IR-10 IR-10 IR-10 IR-10 IR-10 IR-10 IR-10	IR10MW33A IR10MW33A IR10MW33A IR10MW33A IR10MW33A IR10MW33A IR10MW33A IR10MW33A IR10MW33A IR10MW33A IR10MW33A IR10MW33A IR10MW33A	1,1-DICHLOROETHENE 1,2,4-TRICHLOROBENZENE 1,2-DIBROMO-3-CHLOROPROPANE 1,2-DIBROMOETHANE 1,2-DICHLOROBENZENE 1,2-DICHLOROBENZENE 1,2-DICHLOROPROPANE 1,3-DICHLOROBENZENE 1,4-DICHLOROBENZENE 2-BUTANONE 2-HEXANONE 4-METHYL-2-PENTANONE ACETONE	1 ND		ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	LVOA LVOA LVOA LVOA LVOA LVOA LVOA LVOA	0002P004 0002P004 0002P004 0002P004 0002P004 0002P004 0002P004 0002P004 0002P004 0002P004 0002P004 0002P004	
IR-10 IR-10 IR-10 IR-10 IR-10 IR-10 IR-10 IR-10 IR-10 IR-10 IR-10 IR-10 IR-10 IR-10 IR-10	IR10MW33A IR10MW33A IR10MW33A IR10MW33A IR10MW33A IR10MW33A IR10MW33A IR10MW33A IR10MW33A IR10MW33A IR10MW33A IR10MW33A IR10MW33A IR10MW33A	1.1-DICHLOROETHENE 1.2.4-TRICHLOROBENZENE 1.2-DIBROMO-3-CHLOROPROPANE 1.2-DIBROMOETHANE 1.2-DICHLOROBENZENE 1.2-DICHLOROPROPANE 1.2-DICHLOROPROPANE 1.3-DICHLOROBENZENE 1.4-DICHLOROBENZENE 2-BUTANONE 2-HEXANONE 4-METHYL-2-PENTANONE BENZENE	1 ND		ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	LVOA LVOA LVOA LVOA LVOA LVOA LVOA LVOA	0002P004 0002P004 0002P004 0002P004 0002P004 0002P004 0002P004 0002P004 0002P004 0002P004 0002P004 0002P004 0002P004	
IR-10	IR10MW33A IR10MW33A IR10MW33A IR10MW33A IR10MW33A IR10MW33A IR10MW33A IR10MW33A IR10MW33A IR10MW33A IR10MW33A IR10MW33A IR10MW33A IR10MW33A IR10MW33A	1.1-DICHLOROETHENE 1.2.4-TRICHLOROBENZENE 1.2-DIBROMO-3-CHLOROPROPANE 1.2-DIBROMOETHANE 1.2-DICHLOROBENZENE 1.2-DICHLOROPROPANE 1.3-DICHLOROBENZENE 1.3-DICHLOROBENZENE 1.4-DICHLOROBENZENE 2-BUTANONE 2-HEXANONE 4-METHYL-2-PENTANONE ACETONE BENZENE BROMOCHLOROMETHANE	1 ND		ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	LVOA LVOA LVOA LVOA LVOA LVOA LVOA LVOA	0002P004 0002P004 0002P004 0002P004 0002P004 0002P004 0002P004 0002P004 0002P004 0002P004 0002P004 0002P004 0002P004 0002P004	
IR-10	IR10MW33A	1,1-DICHLOROETHENE 1,2,4-TRICHLOROBENZENE 1,2-DIBROMO-3-CHLOROPROPANE 1,2-DIBROMOETHANE 1,2-DICHLOROBENZENE 1,2-DICHLOROPROPANE 1,3-DICHLOROBENZENE 1,4-DICHLOROBENZENE 2-BUTANONE 2-HEXANONE 4-METHYL-2-PENTANONE ACETONE BENZENE BROMOCHLOROMETHANE BROMODICHLOROMETHANE	1 ND		ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	LVOA LVOA LVOA LVOA LVOA LVOA LVOA LVOA	0002P004 0002P004 0002P004 0002P004 0002P004 0002P004 0002P004 0002P004 0002P004 0002P004 0002P004 0002P004 0002P004 0002P004 0002P004	
IR-10	IR10MW33A	1,1-DICHLOROETHENE 1,2,4-TRICHLOROBENZENE 1,2-DIBROMO-3-CHLOROPROPANE 1,2-DIBROMOETHANE 1,2-DICHLOROBENZENE 1,2-DICHLOROPROPANE 1,3-DICHLOROBENZENE 1,4-DICHLOROBENZENE 2-BUTANONE 2-HEXANONE 4-METHYL-2-PENTANONE ACETONE BENZENE BROMOCHLOROMETHANE BROMOFORM	1 ND		ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	LVOA LVOA LVOA LVOA LVOA LVOA LVOA LVOA	0002P004 0002P004 0002P004 0002P004 0002P004 0002P004 0002P004 0002P004 0002P004 0002P004 0002P004 0002P004 0002P004 0002P004 0002P004	
IR-10	IR10MW33A	1,1-DICHLOROETHENE 1,2,4-TRICHLOROBENZENE 1,2-DIBROMO-3-CHLOROPROPANE 1,2-DIBROMOETHANE 1,2-DICHLOROBENZENE 1,2-DICHLOROPROPANE 1,2-DICHLOROPROPANE 1,3-DICHLOROBENZENE 1,4-DICHLOROBENZENE 2-BUTANONE 2-HEXANONE 4-METHYL-2-PENTANONE ACETONE BENZENE BROMOCHLOROMETHANE BROMODICHLOROMETHANE BROMOFORM BROMOMETHANE	1 ND		ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	LVOA LVOA LVOA LVOA LVOA LVOA LVOA LVOA	0002P004 0002P004 0002P004 0002P004 0002P004 0002P004 0002P004 0002P004 0002P004 0002P004 0002P004 0002P004 0002P004 0002P004 0002P004 0002P004	
IR-10	IR10MW33A	1,1-DICHLOROETHENE 1,2,4-TRICHLOROBENZENE 1,2-DIBROMO-3-CHLOROPROPANE 1,2-DIBROMOETHANE 1,2-DICHLOROBENZENE 1,2-DICHLOROPROPANE 1,2-DICHLOROPROPANE 1,3-DICHLOROBENZENE 1,4-DICHLOROBENZENE 2-BUTANONE 2-HEXANONE 4-METHYL-2-PENTANONE ACETONE BENZENE BROMOCHLOROMETHANE BROMODICHLOROMETHANE BROMOFORM BROMOMETHANE CARBON DISULFIDE	1 ND		ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	LVOA LVOA LVOA LVOA LVOA LVOA LVOA LVOA	0002P004 0002P004 0002P004 0002P004 0002P004 0002P004 0002P004 0002P004 0002P004 0002P004 0002P004 0002P004 0002P004 0002P004 0002P004 0002P004 0002P004 0002P004	
IR-10	IR10MW33A	1.1-DICHLOROETHENE 1.2.4-TRICHLOROBENZENE 1.2-DIBROMO-3-CHLOROPROPANE 1.2-DIBROMOETHANE 1.2-DICHLOROBENZENE 1.2-DICHLOROPROPANE 1.3-DICHLOROBENZENE 1.4-DICHLOROBENZENE 2-BUTANONE 2-HEXANONE 4-METHYL-2-PENTANONE ACETONE BENZENE BROMOCHLOROMETHANE BROMODICHLOROMETHANE BROMOFORM BROMOMETHANE CARBON DISULFIDE CARBON TETRACHLORIDE	1 ND		ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	LVOA LVOA LVOA LVOA LVOA LVOA LVOA LVOA	0002P004 0002P004 0002P004 0002P004 0002P004 0002P004 0002P004 0002P004 0002P004 0002P004 0002P004 0002P004 0002P004 0002P004 0002P004 0002P004	
IR-10	IR10MW33A	1.1-DICHLOROETHENE 1.2.4-TRICHLOROBENZENE 1.2-DIBROMO-3-CHLOROPROPANE 1.2-DIBROMOETHANE 1.2-DICHLOROBENZENE 1.2-DICHLOROPROPANE 1.3-DICHLOROBENZENE 1.4-DICHLOROBENZENE 2-BUTANONE 2-HEXANONE 4-METHYL-2-PENTANONE ACETONE BENZENE BROMOCHLOROMETHANE BROMODICHLOROMETHANE BROMOFORM BROMOMETHANE CARBON DISULFIDE CARBON TETRACHLORIDE CHLOROBENZENE	1 ND		ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	LVOA LVOA LVOA LVOA LVOA LVOA LVOA LVOA	0002P004 0002P004 0002P004 0002P004 0002P004 0002P004 0002P004 0002P004 0002P004 0002P004 0002P004 0002P004 0002P004 0002P004 0002P004 0002P004 0002P004 0002P004	
IR-10	IR10MW33A	1,1-DICHLOROETHENE 1,2,4-TRICHLOROBENZENE 1,2-DIBROMO-3-CHLOROPROPANE 1,2-DIBROMOETHANE 1,2-DICHLOROBENZENE 1,2-DICHLOROPROPANE 1,3-DICHLOROBENZENE 1,4-DICHLOROBENZENE 2-BUTANONE 2-HEXANONE 4-METHYL-2-PENTANONE ACETONE BENZENE BROMOCHLOROMETHANE BROMODICHLOROMETHANE BROMOFORM BROMOMETHANE CARBON DISULFIDE CARBON TETRACHLORIDE CHLOROBENZENE CHLOROBENZENE	1 ND		ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	LVOA LVOA LVOA LVOA LVOA LVOA LVOA LVOA	0002P004 0002P004 0002P004 0002P004 0002P004 0002P004 0002P004 0002P004 0002P004 0002P004 0002P004 0002P004 0002P004 0002P004 0002P004 0002P004 0002P004 0002P004 0002P004	
IR-10	IR10MW33A	1,1-DICHLOROETHENE 1,2,4-TRICHLOROBENZENE 1,2-DIBROMO-3-CHLOROPROPANE 1,2-DIBROMOETHANE 1,2-DICHLOROBENZENE 1,2-DICHLOROPROPANE 1,2-DICHLOROPROPANE 1,3-DICHLOROBENZENE 1,4-DICHLOROBENZENE 2-BUTANONE 2-HEXANONE 4-METHYL-2-PENTANONE ACETONE BENZENE BROMOCHLOROMETHANE BROMODICHLOROMETHANE BROMOFORM BROMOMETHANE CARBON DISULFIDE CARBON TETRACHLORIDE CHLOROBENZENE CHLOROFORM	1 ND		ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	LVOA LVOA LVOA LVOA LVOA LVOA LVOA LVOA	0002P004 0002P004	
IR-10	IR10MW33A	1,1-DICHLOROETHENE 1,2,4-TRICHLOROBENZENE 1,2-DIBROMO-3-CHLOROPROPANE 1,2-DIBROMOETHANE 1,2-DICHLOROBENZENE 1,2-DICHLOROPROPANE 1,3-DICHLOROBENZENE 1,4-DICHLOROBENZENE 2-BUTANONE 2-HEXANONE 4-METHYL-2-PENTANONE ACETONE BENZENE BROMOCHLOROMETHANE BROMODICHLOROMETHANE BROMOFORM BROMOMETHANE CARBON DISULFIDE CARBON TETRACHLORIDE CHLOROBENZENE CHLOROBENZENE	1 ND		ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	LVOA LVOA LVOA LVOA LVOA LVOA LVOA LVOA	0002P004 0002P004	

IR Site	Monitoring Well ID	Analyte	Analytical Result (ug/L)	Trigger Level (ug/L)	Units	Analytical Group	Sample Number	Associated Sample Number
IR-10	IR10MW33A	DIBROMOCHLOROMETHANE	1 ND		ug/L	LVOA	0002P004	
IR-10	IR10MW33A	ETHYLBENZENE	1 ND		ug/L		0002P004	
IR-10	IR10MW33A	METHYLENE CHLORIDE	2 ND		ug/L	LVOA	0002P004	
IR-10	IR10MW33A	PROPANE, 2-METHOXY-2-METHYL-	1 ND		ug/L	LVOA	0002P004	
IR-10	IR10MW33A	STYRENE	1 ND)		0002P004	
IR-10	IR10MW33A	TETRACHLOROETHENE	1 ND		ug/L	LVOA	0002P004	
IR-10	IR10MW33A	TOLUENE	1 ND		ug/L	LVOA	0002P004	
IR-10	IR10MW33A	TRANS-1,2-DICHLOROETHENE	0.3 -	224,000	ug/L	LVOA	0002P004	<u> </u>
IR-10	IR10MW33A	TRANS-1,3-DICHLOROPROPENE	0.5 ND		ug/L	LVOA	0002P004	
IR-10	IR10MW33A	TRICHLOROETHENE	23	2,000	ug/L	LVOA	0002P004	
IR-10	IR10MW33A	VINYL CHLORIDE	0.5 ND	5 5	ug/L		0002P004	
		XYLENE (TOTAL)	1 ND		ug/L	LVOA	0002P004	-
	IR18MW21A	ON/OFF-SITE MIGRATION MONITO			- "	VO4	00005004	
IR-18		1,1,1-TRICHLOROETHANE	10 ND		ug/L	VOA	0002F021	
IR-18		1,1,2,2-TETRACHLOROETHANE	10 ND			VOA	0002F021	
IR-18		1,1,2-TRICHLOROETHANE	10 ND	-		VOA	0002F021	
IR-18		1,1-DICHLOROETHANE	10 ND			VOA	0002F021	-
		1,1-DICHLOROETHENE	10 ND	-		VOA	0002F021 0002F021	
IR-18	IR18MW21A	1,2,4-TRICHLOROBENZENE	10 ND		ug/L	SVOA		
IR-18	IR18MW21A	1,2-DICHLOROBENZENE	5 ND		ug/L	SVOA	0002F021	
IR-18		1,2-DICHLOROETHANE	10 ND	-	ug/L		0002F021	
IR-18	IR18MW21A	1,2-DICHLOROETHENE (TOTAL)	10 ND	224,000	ug/L	VOA	0002F021	ļ
IR-18	IR18MW21A	1,2-DICHLOROPROPANE	10 ND		ug/L	VOA	0002F021	ļ
IR-18		1,3-DICHLOROBENZENE	5 ND		ug/L		0002F021	
IR-18		1,4-DICHLOROBENZENE	5 ND		ug/L	SVOA	0002F021	
IR-18	IR18MW21A	2,2'-OXYBIS(1-CHLOROPROPANE)	10 ND		ug/L	SVOA	0002F021	
IR-18	IR18MW21A	2,4,5-TRICHLOROPHENOL	26 ND	-	-		0002F021	
IR-18	IR18MW21A	2,4,6-TRICHLOROPHENOL	10 ND	-	ug/L	SVOA	0002F021	
IR-18	IR18MW21A	2,4-DICHLOROPHENOL	10 ND		ug/L	SVOA	0002F021	
IR-18	IR18MW21A	2,4-DIMETHYLPHENOL	10 ND		ug/L		0002F021	ļ
IR-18		2,4-DINITROPHENOL	26 ND		ug/L	SVOA	0002F021	
IR-18		2,4-DINITROTOLUENE	10 ND		ug/L	SVOA	0002F021	
IR-18		2,6-DINITROTOLUENE	10 ND		ug/L		0002F021	
IR-18		2-BUTANONE	10 ND		ug/L	VOA	0002F021	<u> </u>
IR-18		2-CHLORONAPHTHALENE	10 ND	3,000	ug/L	SVOA SVOA	0002F021 0002F021	
IR-18		2-CHLOROPHENOL	10 ND		ug/L		0002F021	
IR-18	IR18MW21A	2-HEXANONE	10 ND		ug/L	VOA SVOA	0002F021	
IR-18		2-METHYLNAPHTHALENE	10 ND	3,000	ug/L	SVOA	0002F021	
IR-18		2-METHYLPHENOL	10 ND		ug/L ug/L	SVOA	0002F021	
		2-NITROANILINE	26 ND				0002F021	
		2-NITROPHENOL	10 ND				0002F021	
		3,3'-DICHLOROBENZIDINE	10 ND 26 ND			SVOA	0002F021	
		3-NITROANILINE	0.02 ND				0002F021	
		4,4'-DDD		-		PEST	0002F021	
		4.4'-DDE	0.02 ND 0.02 ND	-		PEST	0002F021	
		4.4'-DDT	26 ND			SVOA	0002F021	
IR-18		4,6-DINITRO-2-METHYLPHENOL	10 ND			SVOA	0002F021	
IR-18		4-BROMOPHENYL-PHENYLETHER	10 ND			SVOA	0002F021	
		4-CHLORO-3-METHYLPHENOL	10 ND		ug/L	SVOA	0002F021	
IR-18		4-CHLOROANILINE 4-CHLOROPHENYL-PHENYLETHER	10 ND		ug/L	SVOA	0002F021	<u> </u>
IR-18			10 ND			VOA	0002F021	1
		4-METHYL-2-PENTANONE	10 ND			SVOA	0002F021	
		4-METHYLPHENOL	26 ND			SVOA	0002F021	
		4-NITROANILINE	26 ND			SVOA	0002F021	
		4-NITROPHENOL	10 ND	3,000	+	SVOA	0002F021	
		ACENA PUT LEVI EN E	10 ND	3,000	ug/L	SVOA	0002F021	<u> </u>
		ACETONS	10 ND		ug/L	VOA	0002F021	
		ACETONE	0.01 ND			PEST	0002F021	
IR-18	IR18MW21A	ALDRIN ALPHA-BHC	0.01 ND			PEST	0002F021	1

]	1		T	
IR Site	Monitoring Well ID	Analyte	Analytical Result (ug/L)	Trigger Level (ug/L)	Units	Analytical Group	Sample Number	Associated Sample Number
IR-18	IR18MW21A	ALPHA-CHLORDANE	0.01 ND		ug/L	PEST	0002F021	
IR-18	IR18MW21A	ALUMINUM	15.5 ND		ug/L	DMETAL	0002F021	
IR-18	IR18MW21A	ANTHRACENE	10 ND	3,000	ug/L	SVOA	0002F021	ļ
IR-18	IR18MW21A	ANTIMONY	4	5,000	ug/L	DMETAL	0002F021	ļ
IR-18	IR18MW21A	AROCLOR-1016	0.1 ND	1.9	ug/L	PEST	0002F021	
IR-18	IR18MW21A	AROCLOR-1221	0.2 ND	1.9		PEST	0002F021	
IR-18	IR18MW21A	AROCLOR-1232	0.1 ND	1.9		PEST	0002F021	
IR-18	IR18MW21A	AROCLOR-1242	0.1 ND	1.9		PEST	0002F021	ļ
IR-18	IR18MW21A	AROCLOR-1248	0.1 ND	1.9		PEST	0002F021	
IR-18	IR18MW21A	AROCLOR-1254	0.1 ND	1.9		PEST	0002F021	
IR-18	IR18MW21A	AROCLOR-1260	0.1 ND	1.9		PEST	0002F021	
IR-18	IR18MW21A	ARSENIC	14.2 ND	360		DMETAL	0002F021	
IR-18	IR18MW21A	BARIUM	851	5,040	ug/L°	DMETAL	0002F021	
		BENZENE	10 ND		ug/L	VOA	0002F021	ļ
IR-18		BENZO(A)ANTHRACENE	10 ND	3,000		SVOA	0002F021	·
	IR18MW21A	BENZO(A)PYRENE	10 ND	3,000		SVOA	0002F021	
		BENZO(B)FLUORANTHENE	10 ND	3,000		SVOA	0002F021	
		BENZO(G,H,I)PERYLENE	10 ND	3,000		SVOA	0002F021	
	IR18MW21A	BENZO(K)FLUORANTHENE	10 ND	3,000		SVOA	0002F021	
IR-18	IR18MW21A	BERYLLIUM	0.23 ND	14		DMETAL	0002F021	
	IR18MW21A	BETA-BHC	0.01 ND			PEST	0002F021	
IR-18	IR18MW21A	BIS(2-CHLOROETHOXY)METHANE	10 ND			SVOA SVOA	0002F021	
IR-18	IR18MW21A	BIS(2-CHLOROETHYL)ETHER	10 ND 4 ND				0002F021 0002F021	
	IR18MW21A IR18MW21A	BIS(2-ETHYLHEXYL)PHTHALATE BROMODICHLOROMETHANE	10 ND				0002F021	
	IR18MW21A	BROMOFORM	10 ND		_	VOA	0002F021	
	IR18MW21A	BROMOMETHANE	10 ND				0002F021	
	IR18MW21A	BUTYLBENZYLPHTHALATE	10 ND		_	SVOA	0002F021	
	IR18MW21A	CADMIUM	0.2 ND	93			0002F021	
	IR18MW21A	CALCIUM	99,000		_		0002F021	
	IR18MW21A	CARBAZOLE	10 ND				0002F021	
	IR18MW21A	CARBON DISULFIDE	10 ND			VOA	0002F021	
	IR18MW21A	CARBON TETRACHLORIDE	10 ND				0002F021	
	IR18MW21A	CHLOROBENZENE	10 ND			VOA	0002F021	
IR-18	IR18MW21A	CHLOROETHANE	10 ND	-	ug/L	VOA	0002F021	
IR-18	IR18MW21A	CHLOROFORM	10 ND		ug/L	VOA	0002F021	
IR-18	IR18MW21A	CHLOROMETHANE	10 ND		ug/L	VOA	0002F021	
IR-18	IR18MW21A	CHROMIUM	1 ND	157	ug/L	DMETAL	0002F021	
IR-18	IR18MW21A	CHROMIUM VI	10 ND	1	ug/L	CHROM	0002F021	
IR-18	IR18MW21A	CHRYSENE	10 ND	3,000	ug/L	SVOA	0002F021	
IR-18	IR18MW21A	CIS-1,3-DICHLOROPROPENE	10 ND		ug/L	VOA	0002F021	
IR-18	IR18MW21A	COBALT	1.3 ND	208	ug/L	DMETAL	0002F021	
IR-18	IR18MW21A	COPPER	2.1 ND	280	ug/L	DMETAL	0002F021	
IR-18	IR18MW21A	DELTA-BHC	0.01 ND				0002F021	
		DIBENZ(A,H)ANTHRACENE	10 ND	3,000			0002F021	
		DIBENZOFURAN	10 ND				0002F021	
		DIBROMOCHLOROMETHANE	10 ND				0002F021	
		DIELDRIN	0.02 ND				0002F021	
		DIESEL RANGE ORGANICS	. 100	1,250			0002F021	
		DIETHYLPHTHALATE	10 ND				0002F021	
$\overline{}$		DIMETHYLPHTHALATE	10 ND				0002F021	
	IR18MW21A	DI-N-BUTYLPHTHALATE	10 ND		_		0002F021	
		DI-N-OCTYLPHTHALATE	10 ND				0002F021	
		ENDOSULFAN I	0.01 ND				0002F021	
		ENDOSULFAN II	0.02 ND				0002F021	-
		ENDOSULFAN SULFATE	0.02 ND				0002F021	
		ENDRIN ALDELIYOF	0.02 ND				0002F021	
		ENDRIN KETONE	0.02 ND				0002F021	
		ENDRIN KETONE	0.02 ND				0002F021 0002F021	
IR-18	R18MW21A	ETHYLBENZENE	10 ND		ug/L \	/OA	00027021	

IR Site	Monitoring Well ID	Analyte	Analytical Result (ug/L)	Trigger Level (ug/L)	Units		Number	Associated Sample Number
IR-18	IR18MW21A	FLUORANTHENE	10 ND	3,000	ug/L	SVOA	0002F021	
	IR18MW21A	FLUORENE	, 10 ND	3,000		SVOA	0002F021	
	IR18MW21A	GAMMA-BHC (LINDANE)	0.01 ND			PEST	0002F021	
		GAMMA-CHLORDANE	0.01 ND	1.050	ug/L	PEST TPHPRG	0002F021 0002F021	
	IR18MW21A	GASOLINE RANGE ORGANICS	50 ND 0.002 ND	1,250	ug/L	PEST	0002F021	
		HEPTACHLOR			ug/L ug/L	PEST	0002F021	
		HEPTACHLOR EPOXIDE	0.002 ND 10 ND	 -	ug/L	SVOA	0002F021	
	IR18MW21A	HEXACHLOROBENZENE	10 ND		ug/L ug/L	SVOA	0002F021	
		HEXACHLOROBUTADIENE HEXACHLOROCYCLOPENTADIENE	10 ND			SVOA	0002F021	
IR-18 IR-18		HEXACHLOROETHANE	10 ND		ug/L	SVOA	0002F021	
		INDENO(1,2,3-CD)PYRENE	10 ND	3,000	ug/L	SVOA	0002F021	
	IR18MW21A	IRON	2.220 -	- 3,000		DMETAL	0002F021	
IR-18		ISOPHORONE	10 ND	- -	ug/L	SVOA	0002F021	
		LEAD	1.3 ND	144	+	DMETAL	0002F021	
		MAGNESIUM	59.400			DMETAL	0002F021	
IR-18 IR-18		MANGANESE	989 -	81,400	ug/L	DMETAL	0002F021	
		MERCURY	0.27 ND	6	ug/L	DMETAL	0002F021	
IR-18 IR-18		METHOXYCHLOR	0.1 ND			PEST	0002F021	
IR-18		METHYLENE CHLORIDE	10 ND		+	VOA	0002F021	
IR-18		MOLYBDENUM	6.8 ND				0002F021	· · · · · · · · · · · · · · · · · · ·
IR-18		MOTOR OIL RANGE ORGANICS	500 -			TPHEXT	0002F021	
IR-18		NAPHTHALENE	10 ND	3,000	ug/L	SVOA	0002F021	
		NICKEL	2.1 -	965			0002F021	
		NITROBENZENE	10 ND		-3	SVOA	0002F021	
		N-NITROSO-DI-N-PROPYLAMINE	10 ND			SVOA	0002F021	
IR-18		N-NITROSODIPHENYLAMINE	10 ND		ug/L	SVOA	0002F021	
IR-18		PENTACHLOROPHENOL	26 ND	 		SVOA	0002F021	
IR-18		PHENANTHRENE	10 ND	3,000	ug/L	SVOA	0002F021	
IR-18		PHENOL	10 ND		ug/L	SVOA	0002F021	
		POTASSIUM	14,000 -	-		DMETAL	0002F021	
		PROPANE, 2-METHOXY-2-METHYL-	5 ND			VOA	0002F021	
_		PYRENE	10 ND	3,000	ug/L	SVOA	0002F021	
	IR18MW21A	SELENIUM	2.2 ND	-	ug/L	DMETAL	0002F021	
IR-18	IR18MW21A	SILVER	1.3 ND	74.3	ug/L	DMETAL	0002F021	
IR-18	IR18MW21A	SODIUM	121,000		ug/L	DMETAL	0002F021	
		STYRENE	10 ND	_	ug/L	VOA	0002F021	
		TETRACHLOROETHENE	10 ND		ug/L	VOA	0002F021	
IR-18	IR18MW21A	THALLIUM	3.2 ND	130	ug/L	DMETAL	0002F021	
IR-18	IR18MW21A	TOLUENE	10 ND	-	ug/L	VOA	0002F021	
		TOXAPHENE	0.6 ND		ug/L	PEST	0002F021	
		TRANS-1,3-DICHLOROPROPENE	10 ND		ug/L	VOA	0002F021	
IR-18	IR18MW21A	TRICHLOROETHENE	10 ND	2,000	ug/L	VOA	0002F021	
IR-18	IR18MW21A	VANADIUM	1.8 ND		ug/L	DMETAL	0002F021	
IR-18	IR18MW21A	VINYL CHLORIDE	10 ND	55	ug/L		0002F021	
IR-18	IR18MW21A	XYLENE (TOTAL)	10 ND		ug/L	VOA	0002F021	
1R-18	IR18MW21A	ZINC	195	810	ug/L	DMETAL	0002F021	
IR-23	UT03MW11A	SENTINEL MONITORING W	/ELL					
IR-23	UT03MW11A	1,1,1-TRICHLOROETHANE	10 ND		_		0002F003	
IR-23		1,1,2,2-TETRACHLOROETHANE	10 ND			VOA	0002F003	
		1,1,2-TRICHLOROETHANE	10 ND	-	1	VOA	0002F003	
IR-23	UT03MW11A	1,1-DICHLOROETHANE	10 ND		_	VOA	0002F003	
IR-23	UT03MW11A	1,1-DICHLOROETHENE	10 ND		+	VOA	0002F003	
		1,2-DICHLOROETHANE	10 ND		_	VOA	0002F003	
IR-23	UT03MW11A	1,2-DICHLOROETHENE (TOTAL)	10 ND	224,000	-	VOA	0002F003	
IR-23	UT03MW11A	1,2-DICHLOROPROPANE	10 ND		+	VOA	0002F003	
IR-23		2-BUTANONE	10 ND			VOA	0002F003	
		2-HEXANONE	10 ND	 -	+	VOA	0002F003	
IR-23	UT03MW11A	4-METHYL-2-PENTANONE	10 ND		+	VOA	0002F003	
IR-23	UT03MW11A	ACETONE	10_ND	L	ug/L	VOA	0002F003	L

		·		Trigger	1			Associated
ID 6:4-	Monitoring Well ID	Analyte	Analytical Result (ug/L)	Level (ug/L)	Units	Analytical Group	Sample Number	Sample Number
IR Site			15.5 ND	- (ug/L/	ug/L	TMETAL	0002F003	
IR-23 IR-23		ALUMINUM ALUMINUM	15.5 ND		ug/L	DMETAL	0002F003F	<u> </u>
IR-23		ANTIMONY	2.2 ND	5,000	ug/L	TMETAL	0002F003	
		ANTIMONY	5.4	5,000	ug/L	DMETAL	0002F003F	
IR-23		ARSENIC	2.5 ND	360	ug/L	TMETAL	0002F003	
		ARSENIC	3.2 ND	360	ug/L	DMETAL	0002F003F	
	UT03MW11A		85.1	5,040	ug/L	TMETAL	0002F003	
IR-23		BARIUM	683	5,040	ug/L	DMETAL	0002F003F	
-		BENZENE	10 ND	-	ug/L	VOA	0002F003	
	UT03MW11A		0.1 ND	14		TMETAL	0002F003	
		BERYLLIUM	0.1 ND	14	ug/L	DMETAL	0002F003F	
	UT03MW11A	BROMODICHLOROMETHANE	10 ND	-	ug/L	VOA	0002F003	
IR-23	UT03MW11A	BROMOFORM	10 ND		ug/L	VOA	0002F003	
IR-23	UT03MW11A	BROMOMETHANE	10 ND		ug/L	VOA	0002F003	
IR-23	UT03MW11A	CADMIUM	0.2 ND	93	ug/L	TMETAL	0002F003	
IR-23	UT03MW11A	CADMIUM	0.2 ND	93	ug/L	DMETAL	0002F003F	
IR-23	UT03MW11A	CALCIUM	26,000 -	-	ug/L	TMETAL	0002F003	
IR-23	UT03MW11A	CALCIUM	26,200	-		DMETAL	0002F003F	
IR-23	UT03MW11A	CARBON DISULFIDE	10 ND		ug/L_	VOA	0002F003	
IR-23	UT03MW11A	CARBON TETRACHLORIDE	10 ND		ug/L_	VOA	0002F003	
IR-23	UT03MW11A	CHLOROBENZENE	10 ND			VOA	0002F003	
IR-23	UT03MW11A	CHLOROETHANE	10 ND			VOA	0002F003	
IR-23	UT03MW11A	CHLOROFORM	10 ND			VOA	0002F003	
IR-23	UT03MW11A	CHLOROMETHANE	10 ND			VOA	0002F003	
-	UT03MW11A	CHROMIUM	5.3 ND	157		TMETAL	0002F003	
IR-23	UT03MW11A	CHROMIUM	6.5 ND	157		DMETAL	0002F003F	
IR-23		CHROMIUM VI	10 ND		-	CHROM	0002F003	
		CIS-1,3-DICHLOROPROPENE	10 ND			VOA	0002F003	
		COBALT	1.3 ND	208		TMETAL	0002F003	
		COBALT	1.3 ND	208		DMETAL	0002F003F	
		COPPER	1.6 ND	280	1——	TMETAL DMETAL	0002F003 0002F003F	
IR-23		COPPER	1.6 ND 10 ND	280	ug/L ug/L	VOA	0002F003F	
		DIBROMOCHLOROMETHANE	10 ND	1,250	ug/L	TPHEXT	0002F003	
IR-23		DIESEL RANGE ORGANICS	100 ND	1,230	ug/L	VOA	0002F003	
IR-23		ETHYLBENZENE	50 ND	1,250		TPHPRG	0002F003	
	UT03MW11A	GASOLINE RANGE ORGANICS	18 -	1,250	-3-	TMETAL	0002F003	
IR-23 IR-23		IRON IRON	64.5			DMETAL	0002F003F	
		LEAD	1,3 ND	144	+	TMETAL	0002F003	
	UT03MW11A		1.3 ND	144			0002F003F	
	UT03MW11A		134,000		+ -		0002F003	
	UT03MW11A		130,000			DMETAL	0002F003F	
		MANGANESE	146	81,400		TMETAL	0002F003	
		MANGANESE	144 -	81,400		DMETAL	0002F003F	
IR-23	UT03MW11A		0.1 ND	6		TMETAL	0002F003	
	UT03MW11A		0.12 ND	6		DMETAL	0002F003F	
		METHYLENE CHLORIDE	10 ND		ug/L	VOA	0002F003	
		MOLYBDENUM	0.9 ND	<u></u>	ug/L	TMETAL	0002F003	
		MOLYBDENUM	2 ND		ug/L	DMETAL	0002F003F	
		MOTOR OIL RANGE ORGANICS	300	-		TPHEXT	0002F003	
	UT03MW11A		6.4	965		TMETAL	0002F003	
	UT03MW11A		7.9 -	965	_	DMETAL	0002F003F	
IR-23	UT03MW11A	POTASSIUM	22,900			TMETAL_	0002F003	
IR-23	UT03MW11A	POTASSIUM	22,500	<u></u>	-	DMETAL	0002F003F	
		PROPANE, 2-METHOXY-2-METHYL-	5 ND			VOA	0002F003	
IR-23	UT03MW11A	SELENIUM	2.5 ND			TMETAL	0002F003	
IR-23	UT03MW11A	SELENIUM	2.5 ND			DMETAL	0002F003F	
IR-23	UT03MW11A	SILVER	1 ND	74.3		TMETAL	0002F003	
IR-23	UT03MW11A	SILVER	1 ND	74.3		DMETAL	0002F003F	
IR-23	UT03MW11A	SODIUM	550,000	L <u> </u>	ug/L	TMETAL	0002F003	L

			T				<u> </u>	
IR Site	Monitoring Well ID	Analyte	Analytical Result (ug/L)	Trigger Level (ug/L)	Units	Analytical Group	Sample Number	Associated Sample Number
IR-23	UT03MW11A	SODIUM	522,000		ug/L	DMETAL	0002F003F	
IR-23	UT03MW11A	STYRENE	10 ND		ug/L	VOA	0002F003	
IR-23	UT03MW11A	TETRACHLOROETHENE	10 ND		ug/L	VOA	0002F003	
IR-23	UT03MW11A	THALLIUM	3.2 ND	130	ug/L	TMETAL	0002F003	
IR-23	UT03MW11A	THALLIUM	3.2 ND	130	ug/L	DMETAL	0002F003F	
IR-23		TOLUENE	10 ND		ug/L	VOA	0002F003	
IR-23		TRANS-1,3-DICHLOROPROPENE	10 ND	-	ug/L	VOA	0002F003	
		TRICHLOROETHENE	10 ND	2,000	ug/L	VOA	0002F003	
		VANADIUM	1.8 ND		ug/L	TMETAL	0002F003	
		VANADIUM	3.1		ug/L	DMETAL	0002F003F	
$\overline{}$		VINYL CHLORIDE	10 ND	55	ug/L	VOA	0002F003	L
		XYLENE (TOTAL)	10 ND		ug/L	VOA	0002F003	
		ZINC	3.9 ND	810	ug/L	TMETAL	0002F003	
	UT03MW11A	ZINC CENTINE MONITORING	142 -	810	ug/L	DMETAL	0002F003F	
	IR25MW17A	SENTINEL MONITORING W		r		VOA	0002P002	
	IR25MW17A IR25MW17A	1,1,1-TRICHLOROETHANE 1,1,2,2-TETRACHLOROETHANE	10 ND 10 ND		ug/L ug/L	VOA	0002P002 0002P002	
	IR25MW17A	1,1,2-TRICHLOROETHANE	10 ND	-		VOA	0002P002	
	IR25MW17A	1,1-DICHLOROETHANE	10 ND		ug/L	VOA	0002F002	
	IR25MW17A	1,1-DICHLOROETHENE	10 ND		ug/L	VOA	0002P002	
	IR25MW17A	1,2-DICHLOROETHANE	10 ND		_	VOA	0002P002	
$\overline{}$	IR25MW17A	1,2-DICHLOROETHENE (TOTAL)	10 ND	224,000	ug/L	VOA	0002P002	
$\overline{}$	IR25MW17A	1,2-DICHLOROPROPANE	10 ND		ug/L	VOA	0002P002	-
	IR25MW17A	2-BUTANONE	10 ND	_		VOA	0002P002	-
	IR25MW17A	2-HEXANONE	10 ND			VOA	0002P002	
IR-25	IR25MW17A	4-METHYL-2-PENTANONE	10 ND		ug/L	VOA	0002P002	
IR-25	IR25MW17A	ACETONE	10 ND	-	ug/L	VOA	0002P002	
IR-25	IR25MW17A	ALUMINUM	15.5 ND		ug/L	DMETAL	0002P002A	
IR-25	IR25MW17A	ANTIMONY	4.2	5,000	ug/L	DMETAL	0002P002A	
IR-25	IR25MW17A	ARSENIC	6.2 ND	360	ug/L	DMETAL	0002P002A	
IR-25	IR25MW17A	BARIUM	222	5,040	ug/L	DMETAL_	0002P002A	
IR-25	IR25MW17A	BENZENE	10 ND				0002P002	
		BERYLLIUM	1.5 ND	14			0002P002A	
		BROMODICHLOROMETHANE	10 ND			VOA	0002P002	
		BROMOFORM	10 ND				0002P002	
		BROMOMETHANE	10 ND		-		0002P002	
	IR25MW17A	CADMIUM	0.2 ND	93	-×		0002P002A	
	IR25MW17A	CALCIUM	159,000 -				0002P002A	
		CARBON DISULFIDE	10 ND 10 ND				0002P002 0002P002	
		CARBON TETRACHLORIDE					0002P002	
		CHLOROBENZENE	10 ND 10 ND		_		0002F002 0002P002	
		CHLOROETHANE CHLOROFORM	10 ND				0002F002 0002P002	
		CHLOROMETHANE	10 ND		_		0002P002	
		CHROMIUM	2.6 ND	157	_		0002P002A	
		CHROMIUM VI	10 ND				0002P002A	
		CIS-1,3-DICHLOROPROPENE	10 ND	-			0002P002	
		COBALT	11.7	208	_		0002P002A	
		COPPER	8 ND	280			0002P002A	
		DIBROMOCHLOROMETHANE	10 ND		_		0002P002	
		DIESEL RANGE ORGANICS	100 ND	1,250.00	ug/L	TPHEXT	0002P002A	
		ETHYLBENZENE	10 ND				0002P002	
IR-25	IR25MW17A	GASOLINE RANGE ORGANICS	50 ND	1,250			0002P002A	
IR-25	IR25MW17A	IRON	148 ND				0002P002A	
IR-25	IR25MW17A	LEAD	1.3 ND	144			0002P002A	
IR-25	R25MW17A	MAGNESIUM	854,000 -				0002P002A	
	IR25MW17A	MANGANESE	5,250	81,400			0002P002A	
		MERCURY	0.14 ND	6			0002P002A	
		METHYLENE CHLORIDE	10 ND				0002P002	
IR-25	IR25MW17A	MOLYBDENUM	6.2 ND		ug/L	DMETAL	0002P002A	

IR Site	Monitoring Well ID	Analyte	Analytical Result (ug/L)	Trigger Level (ug/L)	Units	Analytical Group	Sample Number	Associated Sample Number
	IR25MW17A	MOTOR OIL RANGE ORGANICS	100 ND		ug/L	TPHEXT	0002P002A	
IR-25	IR25MW17A	NICKEL	80.6	965	ug/L	DMETAL	0002P002A	
IR-25	IR25MW17A	POTASSIUM	2,450 -	-	ug/L	DMETAL	0002P002A	
IR-25	IR25MW17A	PROPANE, 2-METHOXY-2-METHYL-	5 ND	-	ug/L	VOA	0002P002	
IR-25	IR25MW17A	SELENIUM	2.2 ND	_		DMETAL	0002P002A	
IR-25	IR25MW17A	SILVER	1.3 ND	74.3	ug/L	DMETAL	0002P002A	
IR-25	IR25MW17A	SODIUM	243,000		ug/L	DMETAL	0002P002A	
IR-25	IR25MW17A	STYRENE	10 ND	-	ug/L	VOA	0002P002	
IR-25	IR25MW17A	TETRACHLOROETHENE	10 ND		ug/L	VOA	0002P002	
IR-25	IR25MW17A	THALLIUM	5.3	130	ug/L	DMETAL	0002P002A	
IR-25	IR25MW17A	TOLUENE	10 ND	-	ug/L	VOA	0002P002	
IR-25	IR25MW17A	TRANS-1,3-DICHLOROPROPENE	10 ND		ug/L	VOA	0002P002	
IR-25	IR25MW17A	TRICHLOROETHENE	10 ND	2,000	ug/L	VOA	0002P002	
IR-25	IR25MW17A	VANADIUM	4.4		ug/L	DMETAL	0002P002A	
IR-25	IR25MW17A	VINYL CHLORIDE	. 10 ND	55	ug/L	VOA	0002P002	
IR-25	IR25MW17A	XYLENE (TOTAL)	10 ND			VOA	0002P002	
IR-25	IR25MW17A	ZINC	175	810	ug/L	DMETAL	0002P002A	
IR-26	IR26MW41A	POC MONITORING WEI			<u> </u>			
IR-26	IR26MW41A	1,1,1-TRICHLOROETHANE	10 ND		ug/L	VOA	9950F001	
IR-26	IR26MW41A	1,1,2,2-TETRACHLOROETHANE	10 ND		ug/L	VOA	9950F001	
IR-26	IR26MW41A	1,1,2-TRICHLOROETHANE	10 ND	-	ug/L	VOA	9950F001	
IR-26	IR26MW41A	1,1-DICHLOROETHANE	10 ND		ug/L	VOA	9950F001	
IR-26	IR26MW41A	1,1-DICHLOROETHENE	10 ND		ug/L	VOA	9950F001	
IR-26	IR26MW41A	1,2-DICHLOROETHANE	10 ND		ug/L	VOA	9950F001	
IR-26	IR26MW41A	1,2-DICHLOROETHENE (TOTAL)	10 ND	22,400	ug/L	VOA	9950F001	
IR-26	IR26MW41A	1,2-DICHLOROPROPANE	10 ND			VOA	9950F001	
IR-26	IR26MW41A	2-BUTANONE	10 ND	-		VOA	9950F001	
IR-26	IR26MW41A	2-HEXANONE	10 ND			VOA	9950F001	
	IR26MW41A	4-METHYL-2-PENTANONE	10 ND			VOA	9950F001	
IR-26	IR26MW41A	ACETONE	10 ND			VOA	9950F001	
IR-26	IR26MW41A	ALUMINUM	14.3 ND			DMETAL	9950F001	
	IR26MW41A	ANTIMONY	2.7 ND	500		DMETAL	9950F001	
	IR26MW41A	ARSENIC	1.9 ND	36		DMETAL	9950F001	
		BARIUM	38.5	504	_	DMETAL	9950F001	
	IR26MW41A	BENZENE	10 ND			VOA	9950F001	
IR-26	IR26MW41A	BERYLLIUM	0.2 ND	1.4	-	DMETAL	9950F001	
		BROMODICHLOROMETHANE	10 ND	-		VOA VOA	9950F001 9950F001	
		BROMOFORM	10 ND			VOA	9950F001	
		BROMOMETHANE	10 ND 0.3 ND	9.3			9950F001	
		CADMIUM	38,900 -	9.3			9950F001	
		CARRON DISTRIBUTE	10 ND				9950F001	
	IR26MW41A IR26MW41A	CARBON DISULFIDE CARBON TETRACHLORIDE	10 ND	-			9950F001	
			10 ND			VOA	9950F001	
	IR26MW41A	CHLOROBENZENE CHLOROETHANE	10 ND		_	VOA	9950F001	
	IR26MW41A IR26MW41A	CHLOROFORM	10 ND			VOA	9950F001	
	IR26MW41A	CHLOROMETHANE	10 ND			VOA	9950F001	
	IR26MW41A	CHROMIUM	0.9 ND	15.7		DMETAL	9950F001	
	IR26MW41A	CHROMIUM VI	10 ND		 	CHROM	9950F001	
	IR26MW41A	CIS-1,3-DICHLOROPROPENE	10 ND			VOA	9950F001	
	IR26MW41A	COBALT	2.8	20.8	-		9950F001	
	IR26MW41A	COPPER	1.7 ND	28		DMETAL	9950F001	
		DIBROMOCHLOROMETHANE	10 ND			VOA	9950F001	
		ETHYLBENZENE	10 ND				9950F001	
		GASOLINE RANGE ORGANICS	50 ND	1,250			9950F001	
		IRON	908	_		DMETAL	9950F001	
		LEAD	1 ND	14.4			9950F001	
		MAGNESIUM	124,000 -				9950F001	
		MANGANESE	1,730	8,140			9950F001	
		MERCURY	0.1 ND	0.6			9950F001	

				[Ţ	[ļ	T
IR Site	Monitoring Well ID	Analyte	Analytical Result (ug/L)	Trigger Level (ug/L)	Units	Analytical Group	Sample Number	Associated Sample Number
IR-26	IR26MW41A	METHYLENE CHLORIDE	10 ND		ug/L	VOA	9950F001	
IR-26	IR26MW41A	MOLYBDENUM	2.6		ug/L	DMETAL	9950F001	
IR-26	IR26MW41A	NICKEL	36.5	96.5	ug/L	DMETAL	9950F001	
IR-26	IR26MW41A	POTASSIUM	1,340		ug/L	DMETAL	9950F001	
IR-26	IR26MW41A	PROPANE, 2-METHOXY-2-METHYL-	10 ND		ug/L	VOA	9950F001	
IR-26	IR26MW41A	SELENIUM	2.4 ND		ug/L	DMETAL	9950F001	
IR-26	IR26MW41A	SILVER	1.9 ND	7.43	ug/L	DMETAL	9950F001	
IR-26	IR26MW41A	SODIUM	261,000		ug/L	DMETAL	9950F001	
IR-26		STYRENE	10 ND		ug/L	VOA	9950F001	
IR-26	IR26MW41A	TETRACHLOROETHENE	10 ND		ug/L	VOA	9950F001	
IR-26		THALLIUM	5.5 ND	13	ug/L	DMETAL	9950F001	
		TOLUENE	10 ND	-	ug/L	VOA	9950F001	
$\overline{}$	IR26MW41A	TPH-EXTRACTABLE UNKNOWN HYDROCARBON	100 ND		ug/L	TPHEXT	9950F001	
		TRANS-1,3-DICHLOROPROPENE	10 ND		ug/L	VOA	9950F001	
		TRICHLOROETHENE	10 ND	200	ug/L	VOA	9950F001	
_	IR26MW41A	VANADIUM	9.9		ug/L	DMETAL	9950F001	
	IR26MW41A	VINYL CHLORIDE	10 ND	55	ug/L	VOA	9950F001	
		XYLENE (TOTAL)	10 ND		ug/L	VOA	9950F001	
-		ZINC	9.2 ND	81	ug/L	DMETAL	9950F001	
	IR26MW45A	POC MONITORING WEL			- "	1/04	00005000	
		1,1,1-TRICHLOROETHANE	10 ND	-	ug/L	VOA	0002F008	
$\overline{}$		1,1,2,2-TETRACHLOROETHANE	10 ND		ug/L	VOA	0002F008	
		1,1,2-TRICHLOROETHANE	10 ND		ug/L	VOA	0002F008	
		1,1-DICHLOROETHANE	10 ND			VOA	0002F008	
-	-	1,1-DICHLOROETHENE	10 ND		ug/L.	VOA	0002F008	
		1,2-DICHLOROETHANE	10 ND		ug/L	VOA	0002F008 0002F008	
		1,2-DICHLOROETHENE (TOTAL)	10 ND	22,400		VOA	0002F008	
		1,2-DICHLOROPROPANE	10 ND	-	ug/L ug/L	VOA	0002F008	
		2-BUTANONE	10 ND			VOA	0002F008	
		2-HEXANONE	10 ND			VOA	0002F008	
		4-METHYL-2-PENTANONE	10 ND				0002F008	
		ACETONE	24.2 ND		_	DMETAL	0002F008	
		ALUMINUM ANTIMONY	7.2	500			0002F008	
		ARSENIC	2.5 ND	36	_	DMETAL	0002F008	
		BARIUM	744 -	504		DMETAL	0002F008	
		BENZENE	10 ND			VOA	0002F008	
		BERYLLIUM	0.1 ND	1.4			0002F008	
		BROMODICHLOROMETHANE	10 ND			VOA	0002F008	
		BROMOFORM	10 ND			VOA	0002F008	
		BROMOMETHANE	10 ND				0002F008	
		CADMIUM	0.2 ND	9.3	_		0002F008	
		CALCIUM	174,000		ug/L		0002F008	
		CARBON DISULFIDE	10 ND			VOA	0002F008	
		CARBON TETRACHLORIDE	10 ND			VOA	0002F008	
		CHLOROBENZENE	10 ND		ug/L	VOA	0002F008	
		CHLOROETHANE	10 ND	**	ug/L	VOA	0002F008	
		CHLOROFORM	10 ND			VOA	0002F008	
		CHLOROMETHANE	10 ND		ug/L	VOA	0002F008	
		CHROMIUM	6.4 ND	15.7	ug/L	DMETAL	0002F008	
		CHROMIUM VI	10 ND		ug/L	CHROM	0002F008	
		CIS-1,3-DICHLOROPROPENE	10 ND		ug/L	VOA	0002F008	
		COBALT	1.4 ND	20.8	ug/L	DMETAL	0002F008	
		COPPER	1.6 ND	28	ug/L	DMETAL	0002F008	
		DIBROMOCHLOROMETHANE	10 ND			VOA	0002F008	
		DIESEL RANGE ORGANICS	100 ND	1,250			0002F008	
$\overline{}$		ETHYLBENZENE	10 ND			VOA	0002F008	
IR-26	IR26MW45A	GASOLINE RANGE ORGANICS	50 ND	1,250			0002F008	
IR-26	IR26MW45A	IRON	602				0002F008	
IR-26	IR26MW45A	LEAD	1.3 ND	14.4	ug/L	DMETAL	0002F008	L

IR Site	Monitoring Well ID	Analyte	Analytical Result (ug/L)	Trigger Level (ug/L)	Units	Analytical Group	Sample Number	Associated Sample Number
IR-26	IR26MW45A	MAGNESIUM	496,000		ug/L	DMETAL	0002F008	
IR-26	IR26MW45A	MANGANESE	505	8,140	ug/L	DMETAL	0002F008	
IR-26	IR26MW45A	MERCURY	0.1 ND	0.6	ug/L	DMETAL	0002F008	
R-26	IR26MW45A	METHYLENE CHLORIDE	10 ND		ug/L	VOA	0002F008	
R-26	IR26MW45A	MOLYBDENUM	3.6 ND		ug/L	DMETAL	0002F008	ļ
IR-26	IR26MW45A	MOTOR OIL RANGE ORGANICS	100		ug/L	TPHEXT	0002F008	
IR-26	IR26MW45A	NICKEL	21.3 -	96.5	ug/L	DMETAL	0002F008	
IR-26	IR26MW45A	POTASSIUM	161,000		ug/L	DMETAL	0002F008	
IR-26	IR26MW45A	PROPANE, 2-METHOXY-2-METHYL-	5 ND		ug/L	VOA	0002F008	
IR-26	IR26MW45A	SELENIUM	2.5 ND		ug/L	DMETAL	0002F008	
IR-26	IR26MW45A	SILVER	1 ND	7.43	ug/L	DMETAL	0002F008	
IR-26	IR26MW45A	SODIUM	3,550,000		ug/L		0002F008	
IR-26	IR26MW45A	STYRENE	10 ND		ug/L	VOA	0002F008	
IR-26	IR26MW45A	TETRACHLOROETHENE	10 ND		ug/L	VOA	0002F008	
IR-26	IR26MW45A	THALLIUM	4.9 ND	13	ug/L	DMETAL	0002F008	
IR-26	IR26MW45A	TOLUENE	10 ND		ug/L	VOA	0002F008	
IR-26	IR26MW45A	TRANS-1,3-DICHLOROPROPENE	10 ND		ug/L	VOA	0002F008	
IR-26	IR26MW45A	TRICHLOROETHENE	10 ND	200	ug/L	VOA	0002F008	
IR-26	IR26MW45A	VANADIUM	6.4		ug/L	DMETAL	0002F008	
IR-26	IR26MW45A	VINYL CHLORIDE	10 ND	55	ug/L	VOA	0002F008	
IR-26	IR26MW45A	XYLENE (TOTAL)	10 ND		ug/L	VOA	0002F008	
IR-26	IR26MW45A	ZINC	200	81	ug/L	DMETAL	0002F008	
IR-46	IR46MW37A	POC MONITORING WEL	L					
IR-46	IR46MW37A	1,1,1-TRICHLOROETHANE	10 ND		ug/L	VOA	0002F007	
IR-46	IR46MW37A	1,1,2,2-TETRACHLOROETHANE	10 ND		ug/L	VOA	0002F007	
IR-46	IR46MW37A	1,1,2-TRICHLOROETHANE	10 ND		ug/L	VOA	0002F007	
		1,1-DICHLOROETHANE	10 ND		ug/L	VOA	0002F007	
IR-46	IR46MW37A	1,1-DICHLOROETHENE	10 ND		ug/L	VOA	0002F007	
IR-46	IR46MW37A	1,2-DICHLOROETHANE	10 ND		ug/L	VOA	0002F007	
IR-46	IR46MW37A	1,2-DICHLOROETHANE 1,2-DICHLOROETHENE (TOTAL)	10 ND	22,400	ug/L	VOA	0002F007	
IR-46			10 ND		ug/L	VOA	0002F007	
IR-46	IR46MW37A	1,2-DICHLOROPROPANE	10 ND		ug/L	VOA	0002F007	
IR-46	IR46MW37A	2-BUTANONE	10 ND		ug/L	VOA	0002F007	
IR-46	IR46MW37A	2-HEXANONE	10 ND		ug/L	VOA	0002F007	
IR-46	IR46MW37A	4-METHYL-2-PENTANONE	10 ND		ug/L	VOA	0002F007	
IR-46	IR46MW37A	ACETONE	15.5 ND		ug/L	DMETAL	0002F007	
IR-46	IR46MW37A	ALUMINUM	2.2 ND	500	ug/L	DMETAL	0002F007	
IR-46	IR46MW37A	ANTIMONY	2.5 ND	36	ug/L	DMETAL	0002F007	
IR-46	IR46MW37A	ARSENIC	168	504		DMETAL	0002F007	
IR-46	IR46MW37A	BARIUM	10 ND	- 304			0002F007	
	IR46MW37A	Y			 		0002F007	
IR-46	IR46MW37A	BERYLLIUM	0.1 ND 10 ND	1.4	ug/L ug/L	VOA	0002F007	
IR-46	IR46MW37A	BROMODICHLOROMETHANE	10 ND		ug/L	VOA	0002F007	
IR-46	IR46MW37A	BROMOFORM		-	+	VOA	0002F007	
IR-46	IR46MW37A	BROMOMETHANE	10 ND	0.2			0002F007	
IR-46	IR46MW37A	CADMIUM	0.2 ND	9.3	ug/L		0002F007 0002F007	
IR-46	IR46MW37A	CALCIUM	17,800		ug/L	DMETAL	0002F007	
IR-46	IR46MW37A	CARBON DISULFIDE	10 ND		ug/L	VOA		
IR-46	IR46MW37A	CARBON TETRACHLORIDE	10 ND		ug/L	VOA	0002F007	
IR-46	IR46MW37A	CHLOROBENZENE	10 ND		ug/L	VOA	0002F007	-
IR-46	IR46MW37A	CHLOROETHANE	10 ND		ug/L	VOA	0002F007	
IR-46	IR46MW37A	CHLOROFORM	10 ND		lug/L	VOA	0002F007	
IR-46	IR46MW37A	CHLOROMETHANE	10 ND	45.7	ug/L	VOA	0002F007	
IR-46	IR46MW37A	CHROMIUM	1 ND	15.7	ug/L	DMETAL	0002F007	
IR-46	IR46MW37A	CHROMIUM VI	10 ND		ug/L	CHROM	0002F007	-
IR-46	IR46MW37A	CIS-1,3-DICHLOROPROPENE	10 ND		ug/L	VOA	0002F007	
IR-46	IR46MW37A	COBALT	1.3 ND	20.8	ug/L	DMETAL	0002F007	
IR-46	IR46MW37A	COPPER	1.6 ND	28	ug/L	DMETAL	0002F007	
IR-46	IR46MW37A	DIBROMOCHLOROMETHANE	10 ND		ug/L	VOA	0002F007	
IR-46	IR46MW37A	DIESEL RANGE ORGANICS	100 ND	1,250	ug/L	TPHEXT	0002F007	ļ
IR-46	IR46MW37A	ETHYLBENZENE	10 ND		ug/L	VOA	0002F007	

IR Site	Monitoring Well ID	Analyte	Analytical Result (ug/L)	Trigger Level (ug/L)	Units	Analytical Group	Number	Associated Sample Number
IR-46	IR46MW37A	GASOLINE RANGE ORGANICS	50 ND	1,250	ug/L	TPHPRG	0002F007	
IR-46	IR46MW37A	IRON	75.7		ug/L	DMETAL	0002F007	ļ
IR-46	IR46MW37A	LEAD	1.3 ND	14.4	ug/L	DMETAL	0002F007	
IR-46	IR46MW37A	MAGNESIUM	201,000 -	-	ug/L	DMETAL	0002F007	
IR-46	IR46MW37A	MANGANESE	35.6	8,140	ug/L	DMETAL DMETAL	0002F007	
IR-46	IR46MW37A	MERCURY	0.1 ND	0.6	ug/L	VOA	0002F007	
IR-46	IR46MW37A	METHYLENE CHLORIDE	10 ND 2.3 ND		ug/L ug/L	DMETAL	0002F007	
IR-46	IR46MW37A	MOLYBDENUM MOTOR OIL RANGE ORGANICS	100 ND		ug/L	TPHEXT	0002F007	
IR-46 IR-46	IR46MW37A IR46MW37A	NICKEL	2.9 -	96.5	ug/L	DMETAL	0002F007	
IR-46	IR46MW37A	POTASSIUM	3,820	-		DMETAL	0002F007	
IR-46	IR46MW37A	PROPANE, 2-METHOXY-2-METHYL-	5 ND	_	ug/L	VOA	0002F007	
IR-46	IR46MW37A	SELENIUM	2.5 ND			DMETAL	0002F007	
IR-46	IR46MW37A	SILVER	1 ND	7.43			0002F007	
		SODIUM	128,000 -			DMETAL	0002F007	
IR-46	IR46MW37A	STYRENE '	10 ND		ug/L	VOA	0002F007	
IR-46	IR46MW37A	TETRACHLOROETHENE	10 ND	-	ug/L	VOA	0002F007	
	IR46MW37A	THALLIUM	3.2 ND	13	ug/L	DMETAL	0002F007	
IR-46	IR46MW37A	TOLUENE	10 ND	-	ug/L	VOA	0002F007	
-	IR46MW37A	TRANS-1,3-DICHLOROPROPENE	10 ND	**	ug/L	VOA	0002F007	
	IR46MW37A	TRICHLOROETHENE	10 ND	200	ug/L	VOA	0002F007	
IR-46	IR46MW37A	VANADIUM	1.8 ND	-	ug/L	DMETAL	0002F007	
IR-46	IR46MW37A	VINYL CHLORIDE	. 10 ND	55			0002F007	
IR-46	IR46MW37A	XYLENE (TOTAL)	10 ND		ug/L	VOA	0002F007	
IR-46	IR46MW37A	ZINC	11 ND	81	ug/L	DMETAL	0002F007	
IR-61	IR61MW05A	SENTINEL MONITORING V						
IR-61	IR61MW05A	1,1,1-TRICHLOROETHANE	10 ND			VOA	0002F013	
IR-61	IR61MW05A	1,1,2,2-TETRACHLOROETHANE	10 ND				0002F013	
IR-61	IR61MW05A	1,1,2-TRICHLOROETHANE	10 ND				0002F013	_
		1,1-DICHLOROETHANE	10 ND		×		0002F013	
	IR61MW05A	1,1-DICHLOROETHENE	10 ND				0002F013	
		1,2-DICHLOROETHANE	10 ND	-			0002F013	·
		1,2-DICHLOROETHENE (TOTAL)	10 ND	224,000	-		0002F013 0002F013	_
IR-61	IR61MW05A	1,2-DICHLOROPROPANE	10 ND 10 ND				0002F013	
		2-BUTANONE	10 ND	-			0002F013	
		2-HEXANONE	10 ND				0002F013	
	IR61MW05A	4-METHYL-2-PENTANONE	10 ND				0002F013	
	IR61MW05A	ACETONE	48.5 ND				0002F013	
		ALUMINUM ANTIMONY	5.2	5.000			0002F013	
		ARSENIC	2.5 ND	360			0002F013	
		BARIUM	953 -	5,040			0002F013	
		BENZENE	10 ND				0002F013	
		BERYLLIUM	0.18 ND	14	_	$\overline{}$	0002F013	
		BROMODICHLOROMETHANE	10 ND				0002F013	
		BROMOFORM	10 ND			VOA	0002F013	
_		BROMOMETHANE	10 ND		_		0002F013	
		CADMIUM	0.66 ND	93	ug/L	DMETAL	0002F013	
	IR61MW05A	CALCIUM	57,100		ug/L	DMETAL	0002F013	
	IR61MW05A	CARBON DISULFIDE	10 ND		ug/L	VOA	0002F013	
		CARBON TETRACHLORIDE	10 ND		ug/L	VOA	0002F013	
	IR61MW05A	CHLOROBENZENE	10 ND		ug/L	VOA	0002F013	
	IR61MW05A	CHLOROETHANE	10 ND		ug/L	VOA	0002F013	<u> </u>
	IR61MW05A	CHLOROFORM	10 ND				0002F013	
	IR61MW05A	CHLOROMETHANE	10 ND	-	ug/L		0002F013	
	IR61MW05A	CHROMIUM	4.1 ND	157			0002F013	
		CHROMIUM VI	10 ND				0002F013	L
	IR61MW05A	CIS-1,3-DICHLOROPROPENE	10 ND				0002F013	
	IR61MW05A	COBALT	6.1 ND	208			0002F013	
IR-61	ING LISTARDOW				ug/L	DMETAL	0002F013	

IR-61 IR-61 IR-61 IR-61 IR-61 IR-61	IR61MW05A IR61MW05A IR61MW05A	DIBROMOCHLOROMETHANE	Result (ug/L)	(ug/L)	Units	Analytical Group	Number	Sample Number
IR-61 IR-61 IR-61 IR-61 IR-61 IR-61	IR61MW05A IR61MW05A	IDIBROMOCALOROMETRANE	10 ND		ug/L	VOA	0002F013	
IR-61 IR-61 IR-61 IR-61 IR-61	IR61MW05A	DIESEL RANGE ORGANICS	100 ND	1,250	ug/L	TPHEXT	0002F013	
IR-61 IR-61 IR-61 IR-61 IR-61		ETHYLBENZENE	10 ND		ug/L	VOA	0002F013	
R-61 R-61 R-61 R-61	IR61MW05A	GASOLINE RANGE ORGANICS	50 ND	1,250	+-	TPHPRG	0002F013	
R-61 R-61 R-61	IR61MW05A	IRON	326			DMETAL	0002F013	
IR-61 IR-61	IR61MW05A	LEAD	1.3 ND	144	ug/L	DMETAL	0002F013	
IR-61	IR61MW05A	MAGNESIUM	372,000 -		ug/L	DMETAL	0002F013	
	IR61MW05A	MANGANESE	393	81,400	ug/L	DMETAL	0002F013	ļ
R-61	IR61MW05A	MERCURY	0.1 ND	6	ug/L	DMETAL	0002F013	
IR-61		METHYLENE CHLORIDE	10 ND		ug/L	VOA	0002F013	
	IR61MW05A	MOLYBDENUM	2.3 ND	-	ug/L	DMETAL	0002F013	
R-61	IR61MW05A	MOTOR OIL RANGE ORGANICS	200 -		ug/L	TPHEXT	0002F013	
	IR61MW05A	NICKEL NICKEL	17.9	965	ug/L	DMETAL	0002F013	
IR-61	IR61MW05A	POTASSIUM	3,360	_	ug/L	DMETAL	0002F013	
R-61		PROPANE, 2-METHOXY-2-METHYL-	5 ND	_	ug/L	VOA	0002F013	
R-61	IR61MW05A		2.5 ND	_	ug/L	DMETAL	0002F013	
IR-61	IR61MW05A	SELENIUM	1 ND	74.3		DMETAL	0002F013	
IR-61	IR61MW05A	SILVER	368,000		ug/L	DMETAL	0002F013	
IR-61	IR61MW05A	SODIUM	10 ND		ug/L	VOA	0002F013	
IR-61	IR61MW05A	STYRENE	10 ND		ug/L	VOA	0002F013	
IR-61	IR61MW05A	TETRACHLOROETHENE	3.2 ND	130	ug/L	DMETAL	0002F013	
IR-61	IR61MW05A	THALLIUM	10 ND	-	ug/L	VOA	0002F013	
IR-61	IR61MW05A	TOLUENE	10 ND		ug/L	VOA	0002F013	<u> </u>
IR-61	IR61MW05A	TRANS-1,3-DICHLOROPROPENE	10 ND	2,000	ug/L	VOA	0002F013	
IR-61	IR61MW05A	TRICHLOROETHENE	6	2,000	ug/L	DMETAL	0002F013	
IR-61	IR61MW05A	VANADIUM		55	ug/L	VOA	0002F013	
IR-61	IR61MW05A	VINYL CHLORIDE	10 ND	33	ug/L	VOA	0002F013	
IR-61	IR61MW05A	XYLENE (TOTAL)	10 ND			DMETAL	0002F013	
IR-61	IR61MW05A	ZINC	152	810	ug/L	DIVIETAL	00021013	
PA-50	PA50MW01A	POC MONITORING				111/04	0002P005	
PA-50	PA50MW01A		1 ND		ug/L	LVOA	0002P005	
PA-50	PA50MW01A		1 ND		ug/L	LVOA		-
PA-50	PA50MW01A	1,1,2-TRICHLOROETHANE	1 ND		ug/L	LVOA	0002P005	
PA-50	PA50MW01A	1,1-DICHLOROETHANE	1 ND		ug/L	LVOA	0002P005	
PA-50	PA50MW01A	1,1-DICHLOROETHENE	1 ND		ug/L	LVOA	0002P005	
PA-50	PA50MW01A	1,2,4-TRICHLOROBENZENE	1 ND		ug/L	LVOA	0002P005	
PA-50	PA50MW01A	1,2-DIBROMO-3-CHLOROPROPANE	1 ND		ug/L	LVOA	0002P005	
PA-50	PA50MW01A		1 ND		ug/L	LVOA	0002P005	
PA-50	PA50MW01A	1,2-DICHLOROBENZENE	1 ND		ug/L	LVOA	0002P005	
PA-50	PA50MW01A	1,2-DICHLOROETHANE	0.5 ND		ug/L	LVOA	0002P005	
PA-50		1,2-DICHLOROPROPANE	1 ND			LVOA	0002P005	
PA-50	PA50MW01A	1,3-DICHLOROBENZENE	1 ND		ug/L	LVOA	0002P005	
		1,4-DICHLOROBENZENE	1 ND		ug/L	LVOA	0002P005	
		2-BUTANONE	5 ND		ug/L	LVOA	0002P005	-
PA-50		2-HEXANONE	5 ND		ug/L	LVOA	0002P005	1
PA-50		4-METHYL-2-PENTANONE	5 ND		ug/L	LVOA	0002P005	
PA-50			5 ND	-	ug/L	LVOA	0002P005	1
	PA50MW01A		15.5 ND		ug/L	DMETAL	0002P005	
			3.9	500	ug/L	DMETAL	0002P005	
PA-50			3.3 ND	36	ug/L	DMETAL	0002P005	
	PA50MW01A		424	504	ug/L	DMETAL	0002P005	
PA-50			0.5 ND		ug/L	LVOA	0002P005	
PA-50			0.1 ND	1.4	ug/L	DMETAL	0002P005	
PA-50		BERYLLIUM PROMOCHI OROMETHANE	1 ND		ug/L	LVOA	0002P005	
PA-50		BROMOCHLOROMETHANE	1 ND		ug/L	LVOA	0002P005	
		BROMODICHLOROMETHANE	1 ND		ug/L	LVOA	0002P005	
		BROMOFORM	1 ND	-	ug/L	LVOA	0002P005	
PA-50		BROMOMETHANE	0.2 ND	9.3	ug/L	DMETAL	0002P005	
PA-50			43,500	9.5	ug/L	DMETAL	0002P005	
	PA50MW01A			-	ug/L	LVOA	0002P005	
		CARBON DISULFIDE CARBON TETRACHLORIDE	0.5 ND	+	ug/L ug/L	LVOA	0002P005	

IR Site		Analyte	Analytical Result (ug/L)	Trigger Level (ug/L)	Units		Number	Associated Sample Number
PA-50		CHLOROBENZENE	1 NC		ug/L	LVOA.	0002P005	
PA-50		CHLOROETHANE	1 ND		ug/L	LVOA	0002P005	
		CHLOROFORM	1 ND		ug/L	LVOA	0002P005	
PA-50	PA50MW01A	CHLOROMETHANE	1 ND		ug/L	LVOA	0002P005	
PA-50	PA50MW01A	CHROMIUM	1 ND		ug/L	DMETAL_	0002P005	
PA-50	PA50MW01A	CHROMIUM VI	10 ND	<u> </u>	ug/L	CHROM	0002P005A	
PA-50	PA50MW01A	CIS-1,2-DICHLOROETHENE	1 ND	22,400	ug/L	LVOA	0002P005	
PA-50	PA50MW01A	CIS-1,3-DICHLOROPROPENE	1 ND	<u> </u>	ug/L	LVOA	0002P005	
PA-50	PA50MW01A	COBALT	1.3 ND	20.8	ug/L	DMETAL	0002P005	
PA-50	PA50MW01A	COPPER	1.6 ND	28	ug/L	DMETAL	0002P005	
PA-50	PA50MW01A	DIBROMOCHLOROMETHANE	1 ND		ug/L	LVOA	0002P005	
PA-50	PA50MW01A	DIESEL RANGE ORGANICS	100 ND	1,250	ug/L	TPHEXT	0002P005	
PA-50	PA50MW01A	ETHYLBENZENE	1 ND		ug/L	LVOA	0002P005	
PA-50	PA50MW01A	GASOLINE RANGE ORGANICS	50 ND	1,250	ug/L	TPHPRG	0002P005	
PA-50	PA50MW01A	IRON	14.8 ND		ug/L	DMETAL	0002P005	
PA-50	PA50MW01A	LEAD	1.3 ND	14.4	ug/L	DMETAL	0002P005	
PA-50	PA50MW01A	MAGNESIUM	104,000		ug/L	DMETAL	0002P005	
PA-50	PA50MW01A	MANGANESE	206 -	8,140	ug/L	DMETAL	0002P005	
PA-50	PA50MW01A	MERCURY	0.1 ND	0.6	ug/L	DMETAL	0002P005	
	PA50MW01A	METHYLENE CHLORIDE	2 ND		ug/L	LVOA	0002P005	
PA-50		MOLYBDENUM	2.8 ND	-		DMETAL	0002P005	
PA-50	PA50MW01A	MOTOR OIL RANGE ORGANICS	100 ND		ug/L	TPHEXT	0002P005	
		NICKEL	7.5	96.5	ug/L	DMETAL	0002P005	
PA-50	PA50MW01A	POTASSIUM	5,160	-	ug/L	DMETAL	0002P005	
PA-50	PA50MW01A	PROPANE, 2-METHOXY-2-METHYL-	1 ND		ug/L	LVOA	0002P005	
	PA50MW01A		2.5 ND		ug/L	DMETAL	0002P005	
		SILVER	1 ND	7.43	ug/L	DMETAL	0002P005	
		SODIUM	288,000		ug/L	DMETAL	0002P005	
	PA50MW01A		1 ND	_	ug/L	LVOA	0002P005	
		TETRACHLOROETHENE	1 ND		ug/L	LVOA	0002P005	
	PA50MW01A		3.2 ND	13	ug/L	DMETAL	0002P005	
-		TOLUENE	1 ND	-		LVOA	0002P005	
		TRANS-1,2-DICHLOROETHENE	1 ND	22,400	ug/L	LVOA	0002P005	
	}	TRANS-1,3-DICHLOROPROPENE	0.5 ND	-	ug/L	LVOA	0002P005	
		TRICHLOROETHENE	1 ND	200	ug/L	LVOA	0002P005	
		VANADIUM	3.8	-	ug/L	DMETAL	0002P005	
-		VINYL CHLORIDE	0.5 ND	55	ug/L	LVOA	0002P005	
_		XYLENE (TOTAL)	1 ND		ug/L	LVOA	0002P005	
	PA50MW01A		92	81	ug/L	DMETAL	0002P005	

NOTES: Bold font indicates a trigger level exceedance

CHROM Chromium

DMETAL Dissolved metal

LVOA Low-level volatile organic compound

ND Not detected. Concentration reported is the analytical detection limit

PEST Pesticide

SVOA Semivolatile volatile organic compound

TMETAL Total metal

TPHEXT Total petroleum hydrocarbon - extractable

TPHPRG Total petroleum hydrocarbon - purgeable

ug/L Micrograms per milliliter
VOA Volatile organic compound

APPENDIX B

JANUARY 2000 MONITORING WELL SAMPLING SHEETS

PR	ROJECT	NO:	CTO-270	DATE:	1/12/0	0	WELL NO): [IR06-MW42A	
	OJECT	NAME:	Parcel B I	RAMP Wells	S		WELL DI	AMETER:	4"	
	OJECT	LOCATION:	Hunters P	oint			TOC ELE	V:		
SA	AMPLER	:	D. Posselt			_	LOCK NO): [
Αì	NALYSE	S:	VOCs, SV	/OCs, Pest/F	PCB, M	letals, TPH-E	, TPH-P]		
	ELL DEF	PTH: ruction detail)								
	ELL DEF leasured)	РТН:	13.90	SOFT BO	TTOM?:					
DE	ЕРТН ТО	WATER:	11.02	Т	IME:	1232 1/10				
PR	ESSURE	E (circle one)?:	YES	NO						
IF	YES WA	S PRESSURE	(circle one)	positive	n	egative				*
W	ATER V	OLUME IN W	ELL: 1.87							
[2-	INCH C	ASING=0.16 C	GAL/FT] [4-IN	CH CASING=	0.65 GA	L/FT]				
[6-	INCH C	ASING=1.47 C	GAL/FT] [1 GA	AL=3.78L]					Location Map	
			ſ						 1	
			VOL. (GAL)	5.6 (L	<u> </u>			VOL. (GAL)		
PU	IRGE ME	ETHOD: ha	niler			SAMPL	ING METH	IOD: haile	er	
			T	I	T	T	1	T = = = = = = = = = = = = = = = = = = =		Taria ayaya
	TIME	D.T.W. (ft)	VOL. (gal)	TEMP (C)	pН	D.O. (ppm)	COND.	S.C. (M.S.)	SALINITY (%)	TURBIDITY
-	1236	11.35	1	15.2	5.42	3.33	(mS/cm)		0.07	81
-	1244	11.96	2	18.7	5.44	1.83	1.57		0.07	2
-	1249	12.12	2.5	18.6	5.43	3.21	1.57	,	0.07	2
-	1256	12.40	3	18.6	5.43	,1.98	1.57		0.07	2
-	1304	12.86	3.75	18.4	5.43	2.31	1.59		0.07	8
-	1319	13.15	4.5	17.8	5.47	3.32	1.61		0.08	11
-	1329	13.26	5.0	17.8	5.48	2.99	1.67		0.07	76
-	1426	12.12	Sample VOC		3.40	2.77	1.07		0.07	
-	1/13	11.09	Sample all el							
	0845	11.07	Sample an el	30						
-				· · · · · · · · · · · · · · · · · · ·						
-		, .			1					
-		,			-					
-										
					1					1
	SNATUR	AE:	TA-				w	ATER VOL.	IN DRUM:	
`								EED NEW DE	<u> </u>	

PROJECT NO:	CTO-270 DATE: 1/11/00	WELL NO:	UT03-MW11A
PROJECT NAME:	Parcel B RAMP Wells	WELL DIAMETER:	4"
PROJECT LOCATION:	Hunters Point	TOC ELEV:	
SAMPLER:	D. Posselt/ J. Fortuna	LOCK NO:	
ANALYSES:	VOCs, Metals, TPH-E, TPH-F)	
WELL DEPTH: (from construction detail)			
WELL DEPTH: (measured)	19.63 SOFT BOTTOM?:	ves	
DEPTH TO WATER:	7.69 TIME:	1157 1/10	
PRESSURE (circle one)?:	YES NO		
IF YES WAS PRESSURE	(circle one) positive ne	gative	
WATER VOLUME IN WI [2-INCH CASING=0.16 G	ELL: na EAL/FT] [4-INCH CASING=0.65 GAL	_/FT]	
[6-INCH CASING=1.47 G	AL/FT] [1 GAL=3.78L]	-	Location Map
CALCULATED PURGE \ PURGE METHOD: [].c	VOL. (GAL) na (L)	ACTUAL PURGE VOL. (GAI SAMPLING METHOD: Pe	L) 9.0 (L)

TIME	D.T.W. (ft)	VOL. (gal)	TEMP (C)	pН	D.O. (ppm)	COND.	S.C. (M.S.)	SALINITY (%)	TURBID
						(mS/cm)			
1127	7.67	initial					-		
1147	7.67	1.0	18.25	7.45	0.59	3.241	3.699	1.96	199.7
1153	7.69	2	18.16	7.41	0.55	3.115	3.577	1.89	326.2
1200	7.67	3	18.19	7.39	0.66	3.040	3.489	1.84	563.8
1205	7.69	4	18.16	7.38	0.83	2.985	3.429	1.81	412.9
1211	7.69	5	18.17	7.37	0.92	2.940	3.381	1.78	871.5
1215	7.70	6	18.17	7.36	0.89	2.914	3.353	1.77	871.2
1222	7.69	7	18.04	7.36	0.91	2.905	3.353	1.77	1111.6
1230	7.69	8	18.03	7.35	0.90	2.873	3.314	1.74	613.1
1235	7.69	9	18.03	7.35	0.81	2.871	3.309	1.74	573.0
	sample								

SIGNATURE: MAN

WATER VOL. IN DRUM: NEED NEW DRUM?:

PROJECT 1	NO:	CTO-270	DATE:	1/11/00)	WELL NO	: 11	R06-MW45A	
ROJECT		Parcel B F	RAMP Wells			WELL DIA	AMETER: 4	"	
	LOCATION:	Hunters P	oint			TOC ELEV	/:		
SAMPLER		J. Fortuna	/ D. Posselt		_	LOCK NO	:		
ANALYSE	S:	VOCs, Me	etals, TPH-E	, TPH-	 P				
WELL DEF	PTH:		T	<u></u>				-	
(from const	ruction detail)	L	_						
WELL DEF (measured)	РТН:	13.19	SOFT BOT	гтом?:					
DEPTH TO	WATER:	6.51		IME:	1228]			
PRESSURE	E (circle one)?:	YES	NO						
IF YES WA	AS PRESSURE	(circle one)	positive	ne	egative				
WATER W	OLUME IN W	FII. na					ļ i		
	ASING=0.16 C		CH CASING=	 0.65 GA	L/FT1				
•	ASING 0.10 C ASING=1.47 C				· · - ,		L	Location Map	
(_		
CALCULA	TED PURGE	VOL. (GAL)	na (L	.)	ACTUA	L PURGE	VOL. (GAL)	na (I	L)
PURGE MI	ETHOD: [1,	ow flow/ ne	ristaltic num	n	SAMPL	ING METH	IOD: Peris	taltic numn	
TIME	D.T.W. (ft)	VOL. (gal)	TEMP (C)	pН	D.O. (ppm)	COND. (mS/cm)	S.C. (M.S.)	SALINITY (%)	TURBIDITY
1317	6.13	1.0	15.38	6.94	0.92	30.72	37.51	23.78	57.9
1324	6.10	2.0	14.80	6.94	1.22	26.57	32.67	20.33	87.3
1330	6.10	3.0	14.75	7.36	6.91	12.64	15.45	8.95	115.3
1338	6.01	4	14.89	7.26	7.12	12.46	15.41	9.02	122.7
1348	6.08	5	14.97	7.21	6.90	13.32	1.666	9.60	118.0
		1		1	1 0.50	13.32	16.36	9.00	1
1357	6.64	6	14.96	7.19	7.49	11.42	16.36	8.22	150.4
1357 1407		6 7	14.96				<u> </u>		
L	6.64	l		7.19	7.49	11.42	14.13	8.22	150.4
1407	6.64	7	14.89	7.19	7.49 6.64	11.42	14.13 17.96	8.22 10.65	150.4
1407	6.64 6.73 6.76	7	14.89	7.19 7.08 7.05	7.49 6.64 6.49	11.42 14.51 14.85	14.13 17.96 18.33	8.22 10.65 10.86	150.4 164.9 181.0
1407 1419 1426	6.64 6.73 6.76 6.81	7	14.89	7.19 7.08 7.05	7.49 6.64 6.49	11.42 14.51 14.85	14.13 17.96 18.33	8.22 10.65 10.86	150.4 164.9 181.0
1407 1419 1426	6.64 6.73 6.76 6.81	7	14.89	7.19 7.08 7.05	7.49 6.64 6.49	11.42 14.51 14.85	14.13 17.96 18.33	8.22 10.65 10.86	150.4 164.9 181.0
1407 1419 1426	6.64 6.73 6.76 6.81	7	14.89	7.19 7.08 7.05	7.49 6.64 6.49	11.42 14.51 14.85	14.13 17.96 18.33	8.22 10.65 10.86	150.4 164.9 181.0
1407 1419 1426	6.64 6.73 6.76 6.81	7	14.89	7.19 7.08 7.05	7.49 6.64 6.49	11.42 14.51 14.85	14.13 17.96 18.33	8.22 10.65 10.86	150.4 164.9 181.0
1407 1419 1426	6.64 6.73 6.76 6.81 sample	7 8 8.5	14.89	7.19 7.08 7.05	7.49 6.64 6.49	11.42 14.51 14.85	14.13 17.96 18.33	8.22 10.65 10.86	150.4 164.9 181.0
1407 1419 1426	6.64 6.73 6.76 6.81 sample	7	14.89	7.19 7.08 7.05	7.49 6.64 6.49	11.42 14.51 14.85 1291	14.13 17.96 18.33	8.22 10.65 10.86 9.40	150.4 164.9 181.0

PROJECT NO:	CTO-270 DATE: 1/11/	/00 WELL NO:	IR07-MW19A
PROJECT NAME:	Parcel B RAMP Wells	WELL DIAMETER	R: 4"
PROJECT LOCATION:	Hunters Point	TOC ELEV:	
SAMPLER:	J. Fortuna	LOCK NO:	
ANALYSES:	VOCs, Metals, TPH-E, TPI	H-P	
WELL DEPTH: (from construction detail)			
WELL DEPTH: (measured)	16.85 SOFT BOTTOM	4?:	
DEPTH TO WATER:	9.00 TIME:	1204 1/10	
PRESSURE (circle one)?:	YES NO		
IF YES WAS PRESSURE	(circle one) positive	negative	
WATER VOLUME IN W 12-INCH CASING=0.16 C	ELL: na GAL/FT] [4-INCH CASING=0.65 (GAL/FT]	
[6-INCH CASING=1.47 C		L	Location Map
(Same and	-		
CALCULATED PURGE	VOL. (GAL) na (L)	ACTUAL PURGE VOL. (G	AL) na (L)
PURGE METHOD: 1	ow flow/ peristaltic nump	SAMPLING METHOD:	Peristaltic numn

TIME	D.T.W. (ft)	VOL. (gal)	TEMP (C)	pН	D.O. (ppm)	COND.	S.C. (M.S.)	SALINITY (%)	TURBID
						(mS/cm)			
0941	9.07	initial							
	9.21	1	16.82	6.81	6.43	27.57	27.63		1.7
0959	0922	2	16.74	6.85	6.79	27.72	32.92	20.66	2.0
1006	9.24	3	16.84	6.83	6.86	28.74	34.11	21.49	2.9
1012	9.25	4	16.85	6.83	6.85	29.61	35.04	22.12	10.3
1018	9.27	5	16.87	6.84	6.99	30.12	35.68	22.57	9.2
1023	9.27	6	16.87	6.84	7.03	30.42	36.04	22.82	5.1
1029	9.34	7	16.88	6.84	7.05	30.61	36.30	23.02	82.3
1035	9.32	8	16.79	6.84	7.14	30.84	36.60	23.21	91.8
1042	9.31	9	16.78	6.84	7.14	31.02	36.83	23.37	127.5
1047	9.26	10	16.79	6.84	7.15	31.15	36.95	23.45	117.7
1055	9.25	11	16.77	6.84	7.18	31.37	37.20	23.62	338.2
1100	sample								
					-				
	 	-							

SIGNATURE: _____

WATER VOL. IN DRUM:
NEED NEW DRUM?:

		OTO 270	– – –	1/13/0			[·	R07-MW20A1	
PROJECT		CTO-270	1 2		<u>''</u>	WELL NO	'·	p"	
ROJECT			RAMP Wells		-		-		
	LOCATION:	Hunters P			_	TOC ELE			
SAMPLER		J. Fortuna				LOCK NO):]		
ANALYSE		VOCs, M	etals, TPH-E	, TPH-	·P				
WELL DEI	PTH: ruction detail)					_			
WELL DEI (measured)		23.50	SOFT BO	гтом?:					
DEPTH TO	WATER:	8.56	·	IME:	1201 1/10				
PRESSURE	E (circle one)?:	YES	NO						
IF YES WA	AS PRESSURE	E (circle one)	positive	n	egative				
WATER V	OLUME IN W	ELL: 9.7							
[2-INCH C	ASING=0.16 (GAL/FT] [4-IN	CH CASING=	0.65 GA	L/FT]				
		GAL/FT] [1 GA						Location Map	
		_					_		
CALCULA	TED PURGE	VOL. (GAL)	29.1 (L	.)	ACTUA	L PURGE	VOL. (GAL)	29.0 (L)
PURGE ME	ETHOD: h	ailer			SAMPL	ING METH	IOD: haile	r	
	-								
TIME	D.T.W. (ft)	VOL. (gal)	TEMP (C)	pН	D.O. (ppm)	COND.	S.C. (M.S.)	SALINITY (%)	TURBIDITY
						(mS/cm)			
1030	8.68	4.0	15.5	7.07	5.38	47.2		2.70	10
1035	8.94	8.0	15.6	7.06	5.44	42.3		2.71	19
1038	8.92	12.0	15.6	7.04	5.09	42.5		2.72	32
1044	8.96	16.0	15.5	6.91	5.31	42.5		2.73	28
1049	8.77	20.0	15.7	6.88	5.20	42.6		2.73	37
1053	8.98	23.0	15.7	6.91	5.02	42.7		2.73	41
1056	9.00	26.0	15.8	6.90	5.03	42.7		2.73	40
1100	9.02	29.0	15.8	6.90	5.13	42.7		2.73	41
1110	sample			+					
				-					
						-			
·				-					
									-
L			<u> </u>			1		1	<u> </u>
ONLA TELE		Ave					'ATER VOL. I	N DRIIM:	
GNATUR	(F: Ax C								
	-					N	EED NEW DR	.UIVI !:	

		<u>KL.</u>	CORD	<u> </u>	HIVE BALLO	!			
PROJECT NO:	CTO-270	DATE:	1/13/00)	WELL NO):	IR07-MW21	A1	
PROJECT NAME:	Parcel B R	AMP Wells]	WELL DI	AMETER:	4"		
PROJECT LOCATION:	Hunters Po	oint			TOC ELE	V:			
SAMPLER:	J. Fortuna				LOCK NO):			`
ANALYSES:	VOCs, Me	tals, TPH-E,	TPH-	P					
WELL DEPTH: (from construction detail)									
WELL DEPTH: (measured)	16.87	SOFT BOT	том?:	no]				
DEPTH TO WATER:	13.42] TI	ME:	1143 1/10					
PRESSURE (circle one)?:	YES	NO							
IF YES WAS PRESSURE	(circle one)	positive	ne	egative		,			
WATER VOLUME IN W	ELL: 2.8 ø	al							
[2-INCH CASING=0.16 G	AL/FT] [4-IN	CH CASING=0).65 GA	L/FT]			· · · · · · · · · · · · · · · · · · ·		
[6-INCH CASING=1.47 G	AL/FT] [1 GA	L=3.78L]					Location Ma	p	
CALCULATED PURGE \	/OL. (GAL)	8.4 (L)		ACTUA	L PURGE	VOL. (GAL) 10.0	(L)	
PURGE METHOD: ha	iler			SAMPL	ING METH	IOD: ha	iler		
									
TIME D.T.W. (ft)	VOL. (gal)	TEMP (C)	рН	D.O. (ppm)	COND. (mS/cm)	S.C. (M.S.) SALINITY	(%) T	TURBID

TIME	D.T.W. (ft)	VOL. (gal)	TEMP (C)	pН	D.O. (ppm)	COND.	S.C. (M.S.)	SALINITY (%)	TURBID
						(mS/cm)			
1250	13.60	2.0	16.4	7.36	2.18	2.20		0.10	6
1254	14.02	4.0	16.5	7.37	1.83	2.29		0.11	10
1257	13.98	6.0	16.7	7.42	1.58	2.31		0.11	8
1300	1418	8.0	16.6	7.42	1.87	2.33		0.11	11
1303	1415	10.0	16.7	7.42	1.68	2.33		0.11	18
1313	sample								
									·

SIGNATURE:	M	and the same of th	
	IJ		

WATER VOL. IN DRUM:	· · · · · · · · · · · · · · · · · · ·
NEED NEW DRUM?:	

PROJECT 1	NO:	CTO-270	DATE:	1/14/00		WELL NO:	TR		23A	
ROJECT		Parcel B R	AMP Wells			WELL DIAN	1ETER: 4'	,		
	LOCATION:	Hunters Po	oint			TOC ELEV:				
SAMPLER		J. Fortuna			J	LOCK NO:				
ANALYSE			etals, TPH-E	TPH-I	P					
WELL DEF		, , , , , , ,		,						
	ruction detail)									
WELL DEF (measured)		16.51	SOFT BOT	том?:	no]	•			
DEPTH TO	WATER:	14.28	TI	ME:	1135 1/10					
PRESSURE	E (circle one)?:	YES	NO							
IF YES WA	AS PRESSURE	(circle one)	positive	ne	egative					
		FII. 1.4 p	1							!
	OLUME IN W	LLL			. (500)		•			
_			CH CASING=	0.65 GA	L/FT]			Location	Man	
[6-INCH C	ASING=1.47 C	GAL/FT] [1 GA	L=3.78L]					Location	wap	
CALCULA	TED PURGE	VOL. (GAL)	4.2 (L)	ACTUA	AL PURGE VO	DL. (GAL)	8.0	(L)
PURGE MI		niler			 SAMPL	ING METHO	D: hailer			
	<u> </u>			J						
TIME	D.T.W. (ft)	VOL. (gal)	TEMP (C)	pН	D.O. (ppm)	COND.	S.C. (M.S.)	SALINI	TY (%)	TURBIDITY
						(mS/cm)				
1140	14.34	1.0	17.5	7.51	2.44	1.51		0.06		12
1145	14.40	2.0	17.5	7.55	2.51	1.48		0.06		6
1150	14.42	3.0	17.7	7.58	2.16	1.52		0.07		7
1153	14.42	4.0	17.7	7.59	2.00	1.55		0.07		7
1158	14.43	5.0	17.8	7.60	2.05	1.57		0.07		5
1202	14.41	6.0	17.8	7.64	2.20	1.59		0.07		4
1207	14.42	7.0	17.8	7.63	2.06	1.61		0.07		3
1211	14.44	8.0	17.8	7.64	2.16	1.61		0.07		3
1		1	l		1	. 1		1		1
1215	sample									
	sample									
	sample									
	sample									
	sample									
	sample									
1215										
1215	sample RE:	A					TER VOL. I	NIDDIM		

						_				
PROJECT NO:	CTO-270	DATE:	1/14/00	\square w	ELL NO:		IR07-MW24A			
PROJECT NAME:	Parcel B RAMP Wells			WELL DIAMETER:		METER:	4"			
PROJECT LOCATION:	Hunters Poi	nt		TO	OC ELEV:					
SAMPLER:	D. Posselt			LC	OCK NO:	į				
ANALYSES:	VOCs, Meta	ıls, TPH-I	E, TPH-P							
WELL DEPTH: (from construction detail)							·			
WELL DEPTH: [measured]	18.67	SOFT BO	ттом?:	no			•			
DEPTH TO WATER:	DEPTH TO WATER: 12.23 TIME: 1141 1/10									
PRESSURE (circle one)?:	YES	NO								
IF YES WAS PRESSURE	(circle one)	positive	neg	ative	:					
WATER VOLUME IN WE [2-INCH CASING=0.16 G	VALUE : 12 :		=0.65 GAL/	FT]						
[6-INCH CASING=1.47 G	AL/FT] [1 GAL	=3.78L]			_		Location Map			
CALCULATED PURGE V PURGE METHOD: ha	OL. (GAL) 1	2.6	L)	ACTUAL I		`) 19 oal iler	(L)		

TIME	D.T.W. (ft)	VOL. (gal)	TEMP (C)	pН	D.O. (ppm)	COND.	S.C. (M.S.)	SALINITY (%)	TURBID
						(mS/cm)			
0910	12.05	3	15.4	5.89	2.33	2.51		0.13	999
0915	12.08	6	16.0	5.69	2.04	2.35		0.11	999
0920	12.05	9	16.2	5.67	1.68	2.25		0.10	592
0925	12.10	12	16.2	5.66	2.22	2.21		0.10	445
0933	12.10	15	16.4	5.65	2.17	2.20		0.10	278
0936	12.12	17	16.4	5.64	1.97	2.20		0.10	290
0940	12.13	19	16.4	5.63	1.94	2.20		0.10	256
0945	sample								
					<u> </u>				

SIGNATURE: for Duniel Passelt

WATER VOL. IN DRUM:
NEED NEW DRUM?:

V

DD C 15.5-	NO	CTO-270		1/14/00	0	N/PLL NO	IR07-MW25A	
PROJECT			<u> DATE: </u> RAMP Wells		<u>'</u>	WELL DIAMETER		 _
ROJECT		Hunters P			-	WELL DIAMETER	•	
SAMPLER	LOCATION:	D. Possel			_}	TOC ELEV: LOCK NO:		
ANALYSE				TDII	D	LOCK NO:		
WELL DE		VOCS, M	etals, TPH-E	, 1PH-	· <u>P</u>		· College · Coll	
	truction detail)							
WELL DEI (measured)		21.49	SOFT BOT	ГТОМ?:				
DEPTH T C) WATER:	10.46		IME:	1138 1/10			
PRESSURI	E (circle one)?:	YES	NO			_		
IF YES WA	AS PRESSURE	(circle one)	positive	n	egative			
								
WATER V	OLUME IN W	ELL: 7.17	gal.					
[2-INCH C	ASING=0.16 (GAL/FT] [4-IN	ICH CASING=	0.65 GA	.L/FT]			
[6-INCH C	ASING=1.47 (GAL/FT] [1 G/	AL=3.78L]			•	Location Map	
		ſ						
CALCULA	TED PURGE	VOL. (GAL)	21.5 (L)	ACTUA	AL PURGE VOL. (GA	AL) 24	(L)
PURGE MI	ETHOD: h	ailer			SAMPL	ING METHOD: L	nailer	
TIME	D.T.W. (ft)	VOL. (gal)	TEMP (C)	pН	D.O. (ppm)	COND. S.C. (M (mS/cm)	.S.) SALINITY (%)) TURBIDIT
1137	11.23	3	15.2	5.66	2.70	1.35	0.06	7
1142	11.62	6	15.4	5.67	1.98	1.42	0.06	8
1146	11.69	9	15.4	5.65	2.80	1.47	0.06	33
1150	12.01	12	15.5	5.66	2.63	1.53	0.07	111
1154	12.10	15	15.6	5.66	2.73	1.61	0.07	122
1158	12.07	18	15.6	5.65	2.85	1.63	0.07	117
1201	11.50	20	15.6	5.65	3.24	1.61	0.07	159
1204	11.54	22	15.6	5.65	3.24	1.64	0.07	89
1207	11.73		15.6	5.65	3.38	1.61	0.07	87
	24							
1215	Sample (000)	2P012)						
1250	Sample (000)	2P013)-					· · · · · · · · · · · · · · · · · · ·	
	MS/MSD							
	/	. 1	1.	J				
SIGNATUI	RE: fu	1	Posselt			WATER VO	OL. IN DRUM:	
		For Daniel	Posselt			NEED NEV	V DRUM?:	-

PRO	DJECT 1	NO:	CTO-270	DATE:	1/14/00	0	WELL NO): [IR07-MW26A	
PRO	OJECT I	NAME:	Parcel B I	RAMP Wells		WELL DIAMETER:			4"	_
PRO	DJECT I	LOCATION:	Hunters Point				TOC ELE	v:		
SAN	MPLER	:	D. Posseli	†			LOCK NO):		•
AN	ALYSE	S:	VOCs, M	etals, TPH-E	, TPH-	.P				
	LL DEI m const	PTH: truction detail)				· ·				
	LL DEI asured)		17.90	SOFT BO	гтом?:	no				
DEF	етн то	WATER:	11.46	T	IME:	1153 1/10				
PRE	ESSURE	E (circle one)?:	YES	NO						İ
IF Y	ES WA	AS PRESSURE	(circle one)	positive	n	egative				
WA	TER V	OLUME IN W	ELL: 4.19	oal						
[2-I]	NCH C	ASING=0.16 G	AL/FT] [4-IN	CH CASING=	0.65 GA	L/FT]				
[6-II	NCH C	ASING=1.47 G	AL/FT] [1 G/	AL=3.78L]					Location Map	
CAI	LCULA	TED PURGE V	/OL. (GAL)	12.6 (L	., [ACTUA	L PURGE	VOL. (GAL)	16 ((L)
PUR	RGE ME	ETHOD: ha	iler	•		SAMPL	ING METH	IOD: hail	er	
										
	ГІМЕ	D.T.W. (ft)	VOL. (gal)	TEMP (C)	pН	D.O. (ppm)	COND.	S.C. (M.S.)	SALINITY (%)	TURBID
-	1242	11.46	3	15.7	5.73	4.88	41.9		2.68	261
					ļ <u>.</u>		12.2	ļ		1

TIME	D.T.W. (ft)	VOL. (gal)	TEMP (C)	pН	D.O. (ppm)	COND.	S.C. (M.S.)	SALINITY (%)	TURBID
						(mS/cm)			
1242	11.46	3	15.7	5.73	4.88	41.9		2.68	261
1249	11.54	6	15.6	5.78	5.11	42.8		2.74	357
1252	11.61	9	15.5	5.80	5.66	42.9		2.75	474
1257	11.59	12	15.5	5.81	5.52	43.0		2.75	356
1300	11.63	14	15.5	5.80	5.44	43.1		2.75	296
1303	11.69	16	15.5	5.81	5.51	43.1		2.76	276
1310	sample		,						
								1	
		· · · · · ·							
		-							
								<u> </u>	
						-		†	

SIGNATURE:	John Colombia	
	for Daniel Posselt	

WATER VOL. IN DRUM:	L
NEED NEW DRUM?	

PROJECT I		CTO-270 Parcel B F	DATE:	1/13/00		WELL DIA	·	IR07-MW274	<u> </u>	
	LOCATION:	Hunters P	oint			TOC ELE	v: [
SAMPLER	:	J. Fortuna				LOCK NO	<u>:</u>			
ANALYSE	S:	VOCs, M	etals, TPH-E	, TPH-	P					
WELL DEF	PTH: ruction detail)									-
WELL DEF (measured)		21.03	SOFT BOT	TTOM?:]				
DEPTH TO		13.55 YES		ME:	1146 1/10					
	E (circle one)?: AS PRESSURE		positive	ne	egative					
	OLUME IN W		CH CASING=	0.65 GA	ı/FTì					
	ASING=0.10 C			0.03 GA	L/I I J			Location Map		J
	TED PURGE		14.7 (L				VOL. (GAL)		(L)	
PURGE ME	ETHOD: ha	ailer			SAMPL	ING METH	IOD: hail	er		
TIME	D.T.W. (ft)	VOL. (gal)	TEMP (C)	pН	D.O. (ppm)	COND. (mS/cm)	S.C. (M.S.)	SALINITY ((%) TURBI	DITY
1147	15.48	3.0	17.3	7.27	1.51	1.49		0.06	68	
1152	16.76	6.0	17.7	7.31	1.49	1.50		0.06	123	
1156	17.72	9.0	17.6	7.34	1.52	1.52		0.07	213	
1200	18.04	12.0	17.7	7.34	1.50	1.50		0.06	243	
1204	18.60	14.0	17.7	7.42	1.62	1.49		0.06	193	
1208	18.75	16.0	17.7	7.37	1.57	1.48		0.06	103	
1215	sample									
	Sample		 							
	sample									
	sample									
	sample					,				
	sample					,				
	Sample					,				

NEED NEW DRUM?:

PROJECT NO:	CTO-270 DATE: 1/14/00	WELL NO:	IR07-MW28A
PROJECT NAME:	Parcel B RAMP Wells	WELL DIAMETER	: 4"
PROJECT LOCATION:	Hunters Point	TOC ELEV:	
SAMPLER:	J. Fortuna	LOCK NO:	
ANALYSES:	VOCs (low-level), SVOCs, Pe	est/PCB, Metals, TPH-E, TPH	-P
WELL DEPTH: (from construction detail)			
WELL DEPTH: (measured)	17.87 SOFT BOTTOM?:		
DEPTH TO WATER:	10.48 TIME:	1128 1/10	
PRESSURE (circle one)?:	YES NO		
IF YES WAS PRESSURE	(circle one) positive ne	gative	
WATER VOLUME IN WI		/FT1	
	AL/FT] [4-INCH CASING=0.65 GAI		Location Map
[6-INCH CASING=1.47 G	AL/FIJ[I GAL=3./8L]		Location Map
CALCULATED PURGE \	VOL. (GAL) 14.4 (L)	ACTUAL PURGE VOL. (G/	AL) 23.0 (L)
PURGE METHOD: ha	iller	SAMPLING METHOD:	hailer

TIME	D.T.W. (ft)	VOL. (gal)	TEMP (C)	pН	D.O. (ppm)	COND.	S.C. (M.S.)	SALINITY (%)	TURBID
						(mS/cm)			
0856	10.98	3.0	15.7	7.37	1.88	1.64		0.07	136
0859	11.16	6.0	16.1	7.44	1.51	1.77		0.08	267
0902	11.18	9.0	16.2	7.48	1.69	1.80		0.08	315
0905	11.08	12.0	16.2	7.50	1.97	1.81		0.08	375
0907	10.97	14.0	16.3	7.53	1.76	1.83		0.08	333
0910	10.91	16.0	16.4	7.58	1.94	1.84		0.08	292
0913	11.06	19.0	16.4	7.60	1.98	1.83		0.08	359
0915	10.92	21.0	16.4	7.60	1.89	1.85		0.08	311
0918	10.94	23.0	16.4	7.60	1.90	1.84		0.08	342
0930	sample			1		-			
1010	Duplicate sample 0002F020								
n									
				+					
	· · · · · · · · · · · · · · · · · · ·			1					-

SIGNATURE:	a

WATER VOL. IN DRUM:	
NEED NEW DRUM?:	

PROJECT	NO:	CTO-270	DATE:	1/13/0	0	WELL NO): T	R07-MV	VS2	\neg
ROJECT		Parcel B	RAMP Wells	s			ļ	,,,		
	LOCATION:	Hunters F	Point			TOC ELE				
SAMPLER		D. Possel	f.			LOCK NO):			
ANALYSE	ES:	VOCs, M	etals, TPH-E	E, TPH-	.P] _			
WELL DE	PTH: truction detail)			·						
WELL DE (measured)		18.25	SOFT BO	ТТОМ?:	no					
DEPTH TO	O WATER: E (circle one)?:	11.27 YES		IME:	1155 1/10					
	AS PRESSURE		positive	n	egative				,	
WATER V	OLUME IN W	ELL: 4.54	อลไ							
	ASING=0.16 (ASING=1.47 (∙0.65 GA	L/FT]			Location	Map	
CALCULA	ATED PURGE	VOL. (GAL)	13.6 (L	.) [ACTUA	AL PURGE '	VOL. (GAL)	18	(L	,
PURGE MI		ailer				ING METH	` 			
	D 7711 (0)	Tuov (N	T === (5)	T	T =	Lague		T =		I mi in n in in
TIME	D.T.W. (ft)	VOL. (gal)	TEMP (C)	pН	D.O. (ppm)	COND. (mS/cm)	S.C. (M.S.)	SALINI	ITY (%)	TURBIDITY
1330	11.38	3	15.7	5.67	2.42	36.9		2.33		41
1336	12.62	6	15.9	5.69	2.82	32.3		2.01		61
1340	12.28	9	15.7	5.70	4.24	29.1		1.80		119
1346	12.93	12	15.6	5.70	3.99	28.1		1.72		255
1351	13.41	15	15.6	5.68	4.21	28.4		1.75		329
1355	13.82	18	15.5	5.67	5.03	28.4		1.75		551
1357	sample							<u> </u>		
				 						
<u></u>				<u> </u>						
				-		1		-		
				-		-				
		<u> </u>		-						
				<u> </u>	1		<u> </u>	1		
SIGNATUI	RE: Jr	The	<u> </u>				ATER VOL. II			
	fo:	Daviel	Posser			NI	EED NEW DR	UIVI / .	L	

						i		
PROJECT NO:	CTO-270	DATE:	1/13/00		WELL NO	:	IR07-MWS	-4
PROJECT NAME:	Parcel B R	MP Wel	ls	,	WELL DIA	AMETER:	4"	
PROJECT LOCATION:	Hunters Poi	nt		•	TOC ELEV	/ :		
SAMPLER:	J. Fortuna				LOCK NO	;		
ANALYSES:	VOCs, Met	als, TPH-	E, TPH-P	···				
WELL DEPTH: (from construction detail)							•	
WELL DEPTH: (measured)	20.76	SOFT BO	OTTOM?:					
DEPTH TO WATER:	14.54	•	гіме:	1148 1/10				
PRESSURE (circle one)?:	YES	NO						
IF YES WAS PRESSURE	(circle one)	positive	nega	ative	:			
WATER VOLUME IN WE [2-INCH CASING=0.16 G			=0.65 GAL/I	FT]				
[6-INCH CASING=1.47 G	AL/FT] [1 GAL	=3.78L]					Location Ma	ıp
CALCULATED PURGE V PURGE METHOD: har	OL. (GAL)	2.0	L)		, PURGE \	/OL. (GAL OD: ha) 16.0 iler	(L)

TIME	TIME D.T.W. (ft)	VOL. (gal)	TEMP (C)	pН	D.O. (ppm)	COND.	S.C. (M.S.)	SALINITY (%)	TURBID
						(mS/cm)			
1344	14.78	2.0	16.6	6.93	2.08	17.1		1.01	38
1347	14.74	4.0	16.8	6.97	1.95	18.6		1.10	46
1349	14.83	6.0	16.9	6.96	1.53	19.3		1.14	50
1352	14.78	8.0	16.9	6.97	1.67	19.7		1.17	85
1355	14.77	10.0	16.9	6.98	1.64	20.4		1.21	97
1359	14.74	12.0	16.9	7.00	2.01	20.9		1.25	121
1401	14.72	14.0	16.9	7.00	1.70	21.4		1.28	165
1404	14.73	16.0	16.9	7.00	1.62	21.1		1.27	198
1414	sample			1					
				<u> </u>					
				 				1	
			·		<u> </u>				
			· · · · · · · · · · · · · · · · · · ·	 		-			

SIGNATURE:

WATER VOL. IN DRUM: NEED NEW DRUM?:

									
PROJECT	NO:	CTO-270	DATE:	1/12/00	<u>n</u>	WELL NO): <u> </u>	R10-MW31A1	
ROJECT	NAME:	Parcel B I	RAMP Wells			WELL DI	AMETER: 4	1"	
ROJECT	LOCATION:	Hunters P	oint		<u>'</u>	TOC ELE	v:		
SAMPLER	:	J. Fortun	a			LOCK NO	<u> </u>		j
ANALYSE	S:	VOCs (lo	w-level), Me	tals, TI	РН-Е, ТРН-Р				
WELL DEI	PTH: ruction detail)								
WELL DEI (measured)		17.14	SOFT BO	ГТОМ?:	no				
DEPTH TC		9.29	Т	IME:	1219 1/10				
	E (circle one)?:								
IF YES WA	AS PRESSURE	E (circle one)	positive	n	egative				
WATER V	OLUME IN W	ELL: 5.0 s	วลไ						
[2-INCH C	ASING=0.16 C	GAL/FT] [4-IN	CH CASING=	0.65 GA	L/FT]				
[6-INCH C	ASING=1.47 C	GAL/FT] [1 GA	AL=3.78L]					Location Map	
CALCULA	TED PURGE	VOL (GAL)	15.0 (L	, [ACTUA	1 PURGE	VOL. (GAL)	18.0	(L)
PURGE MI	<u></u>	urge numn	1.7.0	"		ING METH	. `	e numn	
					<u> </u>				
TIME	D.T.W. (ft)	VOL. (gal)	TEMP (C)	pН	D.O. (ppm)	COND. (mS/cm)	S.C. (M.S.)	SALINITY (%)	TURBIDITY
1401	10.68	3.0	17.8	7.08	1.49	17.3		1.01	12
1404	10.94	6.0	17.9	7.12	1.42	17.1		1.01	3
1407	11.18	9.0	18.0	7.12	1.98	17.0		1.00	4
1411	11.27	12.0	18.0	7.11	1.67	17.0		1.00	2
1413	11.13	14.0	18.1	7.15	1.30	17.4		1.02	20
1416	11.18	16.0	18.1	7.14	1.60	16.9		0.99	ī
1419	11.24	18.0	18.1	7.17	1.57	16.9		0.99	7
1425	Sample		 						
	1	1 4=							
SIGNATUR	KE: ///	A					ATER VOL. I EED NEW DR		

RECORD	<u>OF</u>	WA	TEK	SA	MP.	LI	Œ

										4
PROJECT	NO:	CTO-270	DATE:	1/12/00	<u> </u>	WELL NO:		R10-MW	/28A	
PROJECT 1	NAME:	Parcel B F	RAMP Wells			WELL DIA	METER:	2"		
PROJECT I	LOCATION:	Hunters P	oint			TOC ELEV	': <u> </u>	· · · · · · · · · · · · · · · · · · ·		
SAMPLER	•	J. Fortuna				LOCK NO:				
ANALYSE	S:	VOCs, Me	etals, TPH-E,	, TPH-	P					
WELL DEF	PTH: ruction detail)									
WELL DEF (measured)	PTH:	17.25	SOFT BOT	ТОМ?:	no					
DEPTH TO		11.12		ME:	1216 1/10					
	E (circle one)?:	YES								
IF YES WA	AS PRESSURE	(circle one)	positive	n	egative					•
WATER VO	OLUME IN W	ELL: 0.98	gal							
[2-INCH CA	ASING=0.16 G	AL/FT] [4-IN	CH CASING=().65 GA	L/FT]					
[6-INCH CA	ASING=1.47 G	AL/FT] [1 GA	L=3.78L]					Location	Мар	
CALCULA	TED PURGE V	ZOL. (GAL)	2.94 (L		ACTUA	L PURGE V	OL. (GAL)	1.0	(L)	
PURGE ME	. [iler	2.71 (3.	/ 		NG METH				T 1
								 		_
TIME	D.T.W. (ft)	VOL. (gal)	TEMP (C)	рН	D.O. (ppm)	COND.	S.C. (M.S.)	SALINI	TY (%) TUI	RBIDI
						(mS/cm)		·		
1345	dry	1.0	15.0	7.33	2.60	4.59	-	0.23	442	
1452	15.58	Sample VOC	Cs .							
1/13	13.64	Not yet at 80	%, cannot							
0826		sample								
1/14	12.53	Sample meta	1 CDLLD 1	 	 					
	12.33	Sample meta	is, 1 PH-P, 1							1
1313	12.55	amber for TP								
1313	12.33	•				·	****			
1313	12.33	•				·				
1313	12.33	•								
1313	12.33	•								
1313	12.33	•								
1313	12.33	•								
1313	12.35	•								
1313	12.33	•								
1313	12.33	•								
		amber for TP	PH-E							
	RE: J	amber for TP	PH-E				ATER VOL.			

ı

-											
PROJECT	NO:	CTO-270	DATE:	1/14/00		WELL NO): [IR18-MV	V21A		
PROJECT	NAME:	Parcel B	RAMP Wells	`		WELL DIA	AMETER:	4"			
OJECT	LOCATION:	Hunters F	Point			TOC ELEV	V:				
SAMPLER	t :	J. Fortuna	1		-	LOCK NO):				
ANALYSE	ES:	VOCs, S	VOCs, Pest/F	CB, M	etals, TPH-E	ТРН-Р]				
WELL DE	PTH: truction detail)										
WELL DEI		18.93	SOFT BO	гтом?:	no]					
DEPTH TO	O WATER: E (circle one)?:	15.69 YES		IME:	1133 1/10		·				
	AS PRESSURE		positive	ne	egative						
	10 1 1000010	(circle one)	positive	110	gative						
WATER V	OLUME IN W	ELL: 2.1	_{ซล} ใ								
		<u> </u>	ICH CASING=	 0.65 GAI	L/FT1					ļ	
	ASING=1.47 C				- · •	1		Location	Map		
			.•						•		
CALCULA	TED PURGE	VOL. (GAL)	6.3 (L)	ACTUA	L PURGE V	VOL. (GAL)	2.5	(1	L)	
PURGE MI	ETHOD: ha	iler			SAMPL	ING METH	OD: hail	er			•
											
TIME	D.T.W. (ft)	VOL. (gal)	TEMP (C)	pН	D.O. (ppm)	COND.	S.C. (M.S.)	SALINI	TY (%)	TURBIDIT	Y
0935	dry	2.5									
1050	15.75	sample									_
											_
											_
							,, , , , , , , , , , , , , , , , , , ,				_
)		1									-
·											-
							745				_
_											
											_
		-									_
1											-
		1									— I
SIGNATUR	RE: Jan	st	~			W	ATER VOL.	IN DRUM:			
	U					NE	EED NEW D	RUM?:			

PROJECT NO:	CTO-270 DATE: 12/17	7/99 WELL NO:	IR26-MW41A
PROJECT NAME:	Parcel B RAMP Wells	WELL DIAMETER:	4"
PROJECT LOCATION:	Hunters Point	TOC ELEV:	
SAMPLER:	J. Fortuna	LOCK NO:	
ANALYSES:	VOCs, Metals, TPH-E, TPH	H-P	
WELL DEPTH: (from construction detail)			
WELL DEPTH: (measured)	20.9 SOFT BOTTOM	7?: no	•
DEPTH TO WATER: PRESSURE (circle one)?:	7.09 - 6.53 TIME: 131 YES NO	6 1/10- 1225 12/17	
IF YES WAS PRESSURE		negative	
WATER VOLUME IN WI	ELL: 9.4 gal]	
[2-INCH CASING=0.16 G	AL/FT] [4-INCH CASING=0.65 G	GAL/FT]	
[6-INCH CASING=1.47 G	AL/FT] [1 GAL=3.78L]	<u> </u>	Location Map
	· · · · · · · · · · · · · · · · · · ·	 -	
CALCULATED PURGE V	OL. (GAL) 28.2 (L)	ACTUAL PURGE VOL. (GAL	L) 34 (L)
PURGE METHOD: my	.mn	SAMPLING METHOD: be	iler

TIME	ME D.T.W. (ft) VOL	VOL. (gal)	TEMP (C)	pН	D.O. (ppm)	COND.	S.C. (M.S.)	SALINITY (%)	TURBIDI
						(mS/cm)			
1239	8.10	4	18.8	4.72	0.89	5.90			10
1244	9.85	8	18.6	4.42	0.49	1.21		0.05	10
1247	11.37	12	18.7	4.43	0.89	1.22		0.05	-10
1251	12.62	16	18.8	4.48	1.33	1.37		0.06	-10
1255	13.65	20	18.8	4.57	1.08	1.69		0.07	-10
1300	14.42	24	18.9	4.65	1.47	1.98		0.09	-10
1306	13.84	28	18.9	4.70	1.69	2.56		0.12	-10
1309	14.04	30	18.8	4.59	2.58	1.68		0.07	-10
1312	13.81	32	18.9	4.60	2.55	1.68		0.07	-10
1315	13.72	34	18.9	4.57	2.57	1.66		0.07	-10
		-							
								 	

SIGNATURE:___

WATER VOL. IN DRUM:

NEED NEW DRUM?:

PROJECT	NO:	CTO-270	DATE:	1/12/00	n	WELL NO): I	 R26-MW4	15A	
RROJECT		Parcel B I	RAMP Wells		T	WELL DIA	AMETER: 4	,,,		_
	LOCATION:	Hunters P	oint	*****	1	TOC ELE				
SAMPLER		J. Fortuna			_	LOCK NO	:			
ANALYSE	ES:	VOCs, M	etals, TPH-E	TPH-	P]		······································	
WELL DE	PTH:			,		· ,				
(from const	truction detail)									·
WELL DEI (measured)		15.83	SOFT BO	ГТОМ?:	no]				
DEPTH TO) WATER:	7.20	\neg	IME:	1235 1/10					
	E (circle one)?:		_	IIVIL.	<u> </u>					
	AS PRESSURE		positive	n	egative					
	1011000010	, (0.1010 0.10)	positive	••	- Built					
WATER V	OLUME IN W	ELL: 5.6 s	าลใ							
	ASING=0.16 (CH CASING=	0.65 GA	L/FT]					
•	ASING=1.47 (.—· - • j			Location N		
			•						•	
CALCULA	TED PURGE	VOL. (GAL)	16.8 (L	.)	ACTUA	L PURGE	VOL. (GAL)	23.0	(L)
PURGE MI	<u></u>	urge numn			 SAMPL	ING METH	IOD: Purg	e numn/ h	niler	
										
TIME	D.T.W. (ft)	VOL. (gal)	TEMP (C)	pН	D.O. (ppm)	COND.	S.C. (M.S.)	SALINIT	Y (%)	TURBIDIT
						(mS/cm)	-			
1132	7.05	inital								
1135	8.87	3.0	18.0	6.80	0.94	29.3		1.81		8
1140	9.89	6.0	17.7	6.97	2.19	21.6		1.30		75
1143	11.25	9.0	18.0	6.98	1.81	22.6		1.37		165
1146	11.71	12.0	18.2	6.99	1.53	24.7		1.51		100
1150	13.04	15.0	18.2	6.95	1.78	25.1		1.53		36
1154	13.52	17.0	18.3	6.86	1.99	26.8		1.64	-	18
1157	13.53	19.0	18.4	6.98	2.08	25.5		1.56		85
1201	14.29	21.0	18.3	6.98	4.80	22.5		1.46		8
1206	14.68	23.0	18.2	6.93	3.29	23.1		1.40		2
1215	sample	 		1						
				1			,			, , , , , , , , , , , , , , , , , , , ,
				1				1		
				 						
								1	7	
		. 1			1	<u>l</u>	L	_ _		
SIGNATUI	RE:	M				W	ATER VOL. I	N DRUM:		r
	0					NI	EED NEW DR	1 IN/19 ·]	

PROJECT NO:	CTO-270 DATE: 1/12/00	0 WELL NO:	IR46-MW37A
PROJECT NAME:	Parcel B RAMP Wells	WELL DIAMETE	R: 4"
PROJECT LOCATION:	Hunters Point	TOC ELEV:	
SAMPLER:	J. Fortuna	LOCK NO:	`
ANALYSES:	VOCs, Metals, TPH-E, TPH-	P	
WELL DEPTH: (from construction detail)			
WELL DEPTH: (measured)	21.00 SOFT BOTTOM?:	no	
DEPTH TO WATER:	7.73 TIME:	1223 1/10	
PRESSURE (circle one)?:	YES NO	'.	
IF YES WAS PRESSURE	(circle one) positive no	egative	
WATER VOLUME IN WI	ELL: 8.0 gal		
[2-INCH CASING=0.16 G	AL/FT] [4-INCH CASING=0.65 GA	L/FT]	
[6-INCH CASING=1.47 G	AL/FT] [1 GAL=3.78L]		Location Map
CALCULATED PURGE V	/OL. (GAL) 24.0 (L)	ACTUAL PURGE VOL. (G	AL) 28.0 (L)

PURGE METHOD: Purge numn

ГІМЕ	D.T.W. (ft)	VOL. (gal)	TEMP (C)	pН	D.O. (ppm)	COND.	S.C. (M.S.)	SALINITY (%)	TURBID
			·	ļ		(mS/cm)			
0934	9.29	3.0	18.0	7.22	1.12	2.36		0.11	129
0938	10.32	6.6	18.1	7.29	0.95	2.24		0.10	34
0941	10.80	9.0	18.2	7.37	0.86	2.26		0.10	22
)944	11.02	12.0	18.4	7.42	3.92	2.27		0.10	31
0947	11.33	15.0	18.4	7.51	1.15	2.27		0.10	27
0950	11.84	18.0	18.5	7.46	1.01	2.24		0.10	16
0953	11.38	20.0	18.5	7.48	0.78	2.26		0.10	16
0956	11.37	22.0	18.6	7.52	0.80	2.32		0.11	11
)959	11.54	24.0	18.6	7.55	0.80	2.33		0.11	15
1002	11.68	26.0	18.7	7.59	0.89	2.29		0.11	11
1005	11.81	28.0	18.7	7.58	0.83	2.29		0.11	14
1015	sample								
		 - -		-				1	

SAMPLING METHOD:

Purge numn

SIGNATURE: M	 W	ATER VOL. IN DRUM:	

PROJECT 1										
I I COLDOI	NO:	CTO-270	DATE:	1/13/00	<u> </u>	WELL NO):	R61-M	₩05A	
ROJECT	NAME:	Parcel B I	RAMP Wells	l]	WELL DIA	AMETER: 4	"		
ROJECT	LOCATION:	Hunters P	oint		_	TOC ELE	v:			
SAMPLER	:	J. Fortuna				LOCK NO	<u>:</u>			
ANALYSE	S:	VOCs, M	etals, TPH-E	, TPH-	Р					
WELL DEF										
(from const	ruction detail)					_				
WELL DEF		20.83	SOFT BOT	гтом?:	no					
(measured)						_				
ДЕРТН ТО	WATER:	7.87	\bigcap T	IME:	1210]				
PRESSURF	E (circle one)?:	YES	NO NO			_				
IF YES WA	AS PRESSURE	(circle one)	positive	n	egative					
					J					
WATER V	OLUME IN W	ELL: 8.4 s	วลใ		•					
[2-INCH C	ASING=0.16 C	GAL/FT] [4-IN	CH CASING=	 0.65 GA	L/FT]					
•	ASING=1.47 (_		L	Location	мар	
•		,,	•							
CALCULA	TED PURGE	VOL. (GAL)	25.2 (L)	ACTUA	L PURGE	VOL. (GAL)	27.0] (1	_)
PURGE ME	<u> </u>	urge numn/h			 SAMPL	ING METH	IOD: haile	r		
							<u> </u>			
TIME	D.T.W. (ft)	VOL. (gal)	TEMP (C)	pН	D.O. (ppm)	COND.	S.C. (M.S.)	SALIN	ITY (%)	TURBID
						(mS/cm)				
0857	9.82	3.0	15.9	7.37	1.33	3.98		0.20		2
0901	11.68	6.0	15.8	7.50	1.53	4.03		0.20		1
0904	13.01	9.0	15.9	7.55	1.27	4.01		0.20		2
0909	14.95	12.0	16.1	7.55	0.98	3.98		0.20		2
0914	15.71	15.0	16.4	7.55	0.84	4.07		0.20		2
0920	16.53	18.0	16.4	7.52	0.58	4.15		0.21		1
0931	16.79	21.0	16.3	7.36	2.38	4.19		0.21		80
0939	18.40	24.0	16.3	7.31	2.16	4.38		0.22		290
0945	19.31	27.0	16.5	7.35	2.92	4.44		0.22		999
0950	sample			+				-		
0730	Sumple		ļ ·	 		 		-		
<u> </u>				 		-		 		
				 	 			 -		ļ
				-	 			-		
										<u> </u>
]						ĺ			

	RE: Jan	1					ATER VOL. I	Month		

NEED NEW DRUM?:

				_					
PROJECT NO:	CTO-270	DATE:	1/13/00		WELL NO) :	PA50-N	1W01A	
PROJECT NAME:	Parcel B R	MP Wel	ls		WELL DIA	AMETER:	4"		
PROJECT LOCATION:	Hunters Poi	nt			TOC ELE	V:			
SAMPLER:	D. Posselt			·	LOCK NO): -			
ANALYSES:	VOCs (low-	-level), M	letals, TP	Н-Е, ТРН-Р					
WELL DEPTH: (from construction detail)									
WELL DEPTH: (measured)	15.98	SOFT BO	OTTOM?:	no					
DEPTH TO WATER:	8.27		TIME:	1207					
PRESSURE (circle one)?:	YES	NO							
IF YES WAS PRESSURE	(circle one)	positive	ne	gative					
WATER VOLUME IN WI									
[2-INCH CASING=0.16 G	AL/FT] [4-INC	H CASING	i=0.65 GAI	L/FT]		<u> </u>	<u> </u>		
[6-INCH CASING=1.47 G	AL/FT] [1 GAL	=3.78L]					Locatio	on Map	
CALCULATED PURGE V	/OL. (GAL)	15.0	(L)	ACTUA	AL PURGE	VOL. (GAI	21.0] ((L)
PURGE METHOD: ha	iler			SAMPL	ING METH	IOD: ha	iler		
<u> </u>						L			
TIME D.T.W. (ft)	VOL. (gal)	TEMP (C)	pН	D.O. (ppm)	COND.	S.C. (M.S	.) SALI	NITY (%)	TURBII

TIME	D.T.W. (ft)	VOL. (gal)	TEMP (C)	pН	D.O. (ppm)	COND.	S.C. (M.S.)	SALINITY (%)	TURBID
						(mS/cm)			
1043	8.30	3	16.8	5.64	3.23	2.39	_	0.11	103
1100	8.30	6	16.9	5.72	2.28	2.25		0.10	24
1151	8.32	9	17.1	5.72	1.82	2.33		0.11	85
1153	8.33	12	17.2	5.68	1.51	2.29		0.11	120
1202	8.34	15	17.2	5.69	1.89	2.28		0.11	65
1207	8.34	18	17.2	5.69	1.96	2.27		0.10	55
1212	8.33	21	17.1	5.70	1.93	2.27		0.10	53
1220	sample								
				 					

SIGNATURE:_	Joli	fut		
_	for	Dance	PUSIELT	

WATER VOL. IN DRUM:	
NEED NEW DRUM?:	

PROJECT N	1 0:	CTO-270	<u> </u>	1/12/00		WELL NO	′·	R25-MW	/17A	
ROJECT N	NAME:		RAMP Wells	`	4	WELL DI		!"		
ROJECT L	OCATION:	Hunters Po	oint			TOC ELE	V:			
SAMPLER:		D. Posselt				LOCK NO	: i			
ANÁLYSES	S:	VOCs, Me	etals, TPH-E	, TPH-	P				······································	
WELL DEP (from constr	TH: ruction detail)		J			_				
WELL DEP (measured)	TH:	19.96	SOFT BO	ГТОМ?:	no]				
DEPTH TO	WATER:	8.53		IME:	1226 1/10					
PRESSURE	(circle one)?:	YES	NO							
IF YES WA	S PRESSURE	(circle one)	positive	ne	egative					
WATER VO	OLUME IN W	ELL: 7.43	gal							
		GAL/FT] [4-IN	CH CASING=	0.65 GA	L/FT]					
[6-INCH CA	ASING=1.47 C	GAL/FT] [1 GA	L=3.78L]					Location	Мар	
			22.22			I DUDGE		15.5	ď	
	TED PURGE		22.29 (I	2)			VOL. (GAL)		<u>(I</u>	<u>// </u>
PURGE ME	THOD: h	niler			SAMPL	ING METH	IOD: haile	r		j
TIME	D.T.W. (ft)	VOL. (gal)	TEMP (C)	pН	D.O. (ppm)	COND.	S.C. (M.S.)	SALINI	TY (%)	TURBI
1114	10.85	3	17.2	5.35	2.38	5.75		0.30		28
1120	13.36	6	17.7	5.35	2.09	5.95		0.31		27
1126	14.92	9	17.8	5.34	1.98	6.17		0.32		13
1139	18.35	13	18.0	5.34	1.98	6.44		0.34		38
1146	dry	15.5	15.6	5.36	9.55	6.85		0.36		86
1346	18.15	Not yet 80%	I							
1359	Sample VOC	Ss .								
1/13	1615	Not 80%								
1010										
1/14	13.89									
1										
1353	ł	CO								
1353	Sample all el	3C		1	ł .					
	Sample all el	sc	*****					<u> </u>	The second	
	Sample all el	56							Arriva -	,

				KE	COKD	JI WAIEK SA	MINI DING			
PI	ROJECT 1	NO:	CTO-270	DATE:	1/12/00		WELL NO): [IR10-MW33A	
	ROJECT 1		Parcel B F	RAMP Wells			WELL DIA	AMETER:	4"	
		LOCATION:	Hunters P	oint			TOC ELE	v:		
S	AMPLER:		D. Posselt			•	LOCK NO	: Г		
A.	NALYSE	S:	VOCs (lo	w-level)	<u></u>]		
	ELL DEP	PTH: ruction detail)			· · · ·					
	ELL DEP neasured)	тн:	15.03	SOFT BOT	том?:					
		WATER:	8.09	TI NO	ME:	1213 1/10				
		(circle one)?:								
IF	YES WA	S PRESSURE	(circle one)	positive	ne	egative				
W	'ATER VO	OLUME IN W	ELL: 4.51					·		
[2	-INCH CA	ASING=0.16 C	GAL/FT] [4-IN	CH CASING=().65 GA	L/FT]				
[6	-INCH CA	ASING=1.47 C	GAL/FT] [1 GA	AL=3.78L]					Location Map	
_										
C	ALCULA'	TED PURGE	VOL. (GAL)	13.5 (L)	ACTUA	L PURGE	VOL. (GAL)	19 ((L)
ΡĮ	JRGE ME	ETHOD: ha	niler			SAMPL	ING METH	IOD: hai	ler	
		L		······································				·		
	TIME	D.T.W. (ft)	VOL. (gal)	TEMP (C)	рН	D.O. (ppm)	COND.	S.C. (M.S.)	SALINITY (%)	TURBID
		, ,		. ,			(mS/cm)			
	1450	8.61	3	14.6	5.61	4.07	5.64		0.29	20
	1459	8.89	6	14.7	5.48	3.94	5.62		0.29	31
	1506	9.20	9	14.9	5.44	2.55	4.18		0.21	66
	1509	8.64	12	15.2	5.42	3.27	5.50		0.28	459
	1511	12.50	15	15.6	5.42	3 77	6.97		0.37	825

D.T.W. (ft)	VOL. (gal)	TEMP (C)	pН	D.O. (ppm)	COND.	S.C. (M.S.)	SALINITY (%)	TURBID
8.61	3	14.6	5.61	4.07	5.64		0.29	20
8.89	6	14.7	5.48	3.94	5.62		0.29	31
9.20	9	14.9	5.44	2.55	4.18		0.21	66
8.64	12	15.2	5.42	3.27	5.50		0.28	459
12.50	15	15.6	5.42	3.77	6.97		0.37	825
12.44	17	15.7	5.42	3.32	6.45		0.34	999
12.38	19	15.4	5.39	2.55	6.12		0.32	369
sample								
			 					
			 					_
	8.61 8.89 9.20 8.64 12.50 12.44	8.61 3 8.89 6 9.20 9 8.64 12 12.50 15 12.44 17 12.38 19	8.61 3 14.6 8.89 6 14.7 9.20 9 14.9 8.64 12 15.2 12.50 15 15.6 12.44 17 15.7 12.38 19 15.4	8.61 3 14.6 5.61 8.89 6 14.7 5.48 9.20 9 14.9 5.44 8.64 12 15.2 5.42 12.50 15 15.6 5.42 12.44 17 15.7 5.42 12.38 19 15.4 5.39	8.61 3 14.6 5.61 4.07 8.89 6 14.7 5.48 3.94 9.20 9 14.9 5.44 2.55 8.64 12 15.2 5.42 3.27 12.50 15 15.6 5.42 3.77 12.44 17 15.7 5.42 3.32 12.38 19 15.4 5.39 2.55	8.61 3 14.6 5.61 4.07 5.64 8.89 6 14.7 5.48 3.94 5.62 9.20 9 14.9 5.44 2.55 4.18 8.64 12 15.2 5.42 3.27 5.50 12.50 15 15.6 5.42 3.77 6.97 12.44 17 15.7 5.42 3.32 6.45 12.38 19 15.4 5.39 2.55 6.12	8.61 3 14.6 5.61 4.07 5.64 8.89 6 14.7 5.48 3.94 5.62 9.20 9 14.9 5.44 2.55 4.18 8.64 12 15.2 5.42 3.27 5.50 12.50 15 15.6 5.42 3.77 6.97 12.44 17 15.7 5.42 3.32 6.45 12.38 19 15.4 5.39 2.55 6.12	8.61 3 14.6 5.61 4.07 5.64 0.29 8.89 6 14.7 5.48 3.94 5.62 0.29 9.20 9 14.9 5.44 2.55 4.18 0.21 8.64 12 15.2 5.42 3.27 5.50 0.28 12.50 15 15.6 5.42 3.77 6.97 0.37 12.44 17 15.7 5.42 3.32 6.45 0.34 12.38 19 15.4 5.39 2.55 6.12 0.32

SIGNATURE:	Josh						
	0	for	Dante (Posselt			

WATER VOL. IN DRUM:	 '
NEED NEW DRUM?:	

APPENDIX C

JANUARY 2000 SAMPLES CHAIN-OF-CUSTODY RECORDS

Chain of Custody Record

			1			
		*	t		_	i i
7.	1220	· '		. 0	f	•

San Francisco, CA 94105	DO#	T			Preserva	tive Added	
415-543-4880	PO#	Lab:	10)				
Fax 415-543-5480	992285	Curtis & Tompkins 486 0	900	No./Container Types	Analysi	s Required	1
Project name:	or I see that the second of t						
Parcel B RAMP Weils	Rances Moeiz: (415)222-1278	J. Fritvan Field samplers' signatures:			CBs CBs		
Project number:	TtEMI project manager:			VOA r Amb r Poly Jar	OA OA Inges		
CTO 270	Tom Shaff (415) 222 - 8347	MA			P VO. P Pest P Put H Fut H Ext] []]
Sample ID			trix	40 ml 1 Lite Brass Glass	CLP VOA CLP SVOA CLP SVOA CLP Pest/PCBs CLP Metals TPH Purgeables TPH Extractables		
9950 F.001	MS/MSD IRZUMUHIA	12/17/99 1315 Ha	Hr	2	X		
1950F002	Egginnent Blank	10/19/99			X		
	A TOTAL STATE OF THE STATE OF T	18%					
	We have the state of the state						1171
	· · · · · · · · · · · · · · · · · · ·						1//
	15 / 15 (15) / 1 概要错误 (4) (5)	1/1					1/1
	1000 1000 1000 1000 1000 1000 1000 100	1/1/4 50					/
	2月以201/1947 整點(2011)		$\overline{}$				
+ /	The state of the s		7			11/1	
			,			1/11	
						/ 	
						/	
· V	The second of th	1 1 1 2 m				- 	-1
The second of the second	· · · · · · · · · · · · · · · · · · ·	Name (print)		Company	Name	Date	Time
Relinquished by:	(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	John Fortuna		R+m Environne-ta	1.	12/17/94	3:208
Received by:	- the	Steve Stanler	7	CST	•	12/17/99	3:708
Relinquished by:		de de V ersager a source d	1				
Received by:				The Age to Specify to			
Relinquished by:	<u>。其是一个小学校的概要才能从一个特点。</u>	The transfer of the second					•
Received by:	The state of the s						
	五十八分的 对数数数据 经验	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		The supplement of the second			
	transport to the contract of t			and the second second			
Turnaround time/remarks:		freel sont to la	6	Y W			
	gelli copy mis		, · ·		•		
							<u> </u>
		HITE-Laboratory Copy YELLOW-Project Office	Copy	· · · · · · · · · · · · · · · · · · ·	· · ·		

143360

Chain of Custody Record

Page	of	

135 Main St. Suite 1800											- {				Pr	eser	vat	ve A	dde	d			
ļ	PO#	Lab:		(510)												-				.		,	
415-543-4880 Fax 415-543-5480	99-285	Curtis &	Tomak ins	(510) 486- 0400	No	./(Con	tai	ner	Ту	oes				An	aly	sis	Rec	uir	ed		1	
Project name:	TtEMI technical contact:	Field samplers:					Т	T	T	T	-	П		T		8	٤		\top	П	T	\prod	
Parcel & RAMP Wells	Runeer Moerri (415)222-8278	J-Fortu	na / D. P.	osselt		ž							å	ر اؤ	ables	ctabl.	4						ı
					8	Am	집	e P	a	1	1	8	VO S	etal	gun	xtra	3				-		l
CTO-270	Ton Shoff (415) 222-8347	Jem	-/		40 ml VOA	1 Liter Amber	1 Liter Poly	Brass Tube	ass J			K.	CLP SVOA	<u>د</u> ا ک	PHP	PHE	у Х						
Sample ID	Sample Description/Notes	Date	Time	Matrix	8	-	-	<u>a</u>	<u>ਹ</u>			ַ	ت ت	ت اد	Ţ	F.	HCK			Ш			L
0002F002		1/11/00	1100	Water				Ų	_		+-			\pm	-		X		_				L
0002 F 003			1235			-	1	1			+			\pm	+		<u>X</u> _	\vdash	+	\pm	\pm	#	+
8602 F004			1430		-	L	1	_	\Rightarrow	+	+	-					X	1	+	++	士	#	-
0002 F005		V	1517	V	<u> </u>	_	1	\pm	_	=	+-	#=		\pm	+		<u>X</u>	1		$\pm \pm$	~=====:		1
1		1 4	<u>'</u>		14	<u> </u> _	Ц		_	_			\sqcup	1	1		_ _	$\downarrow \downarrow$	_	$\downarrow \downarrow$	\downarrow	4	ļ
					11	_				_	<u> </u>	1		\perp	╢_	\sqcup	_			$\downarrow \downarrow$	4	\perp	+
	/XV				$\perp \! \! \perp$					_		1		4	Ш_	\sqcup			4	41	\perp	\bot	1
	199	1		1		_				4		╢_			$\downarrow \downarrow$	\sqcup			4	$\perp \perp$		4	1
<u> </u>	1111			<u> </u>	'	_			4			1	1_1	_	\downarrow		_	\angle	_		\perp	\perp	1
			/		-	1		4				1	1-1	_	\perp		X		_		\perp		1
			/		┈	Λ	\angle			\perp	_	$\downarrow \!\!\! \downarrow$	\sqcup	\perp	Λ					\bot	\perp	\perp	1
1			<u> </u>	<u> </u>		1	1_								\prod	¥_					Ц	\perp	1
	_ ^		Iama (n=		_																		_

		Name (print)	Company Name	Date	Time
Relinquished by:	Jang ressel	Daniel Possest	R+m Environmental	1/11/50	1637
Received by:	the Estion	Stevan la	CET	1/11/00	1637
Relinquished by:		Stanto		1//	
Received by:					
Relinquished by:			Received over the count	the cole	ℓ
Received by:			and intact		
Relinquished by:			C.	71/11/0	
Received by:					

Turnaround time/remarks:

5 Main St. Suite 1800	1U3387 Cha	in of Cı	istouj	1400011	_									Pres	ervat	ive A	dded		$\overline{}$
II Francisco, CA 94105	PO#	Lab:		(510)															$\perp \! \! \perp$
5-543-4880	60 174	Curtis # -	Frak he	486	No.	./(Cont	tain	er T	ypes			4	Anal	lysis	Req	uirec	1	
ıx 415-543-5480	66	Field samplers:	Total Euro	U (UV		\top	\top	T	П	\top	11			2 8	\$	TI	T		11
roject name:	TrEMI technical contact:	i	rtuna			5	1				$\ \ $	1	CLP Pest/PCBs CLP Metals	TPH Purgeables	8				11
	Rasel Molzzi (415) 222-8278	Field samplers'			8	1 Liter Amber	1 Liter Poly				8	Ş.		al R	3				
Project number:	Tan Shaff (415) 222-8347	1	An	>	40 ml VOA	늘	5	Glass Jar			P V	S		HE	對				
CTO -270	Sample Description/Notes	Bate	Time	Matrix	8	=		<u>ම්</u> ල්	<u> </u>		ט	0	ଅଧ	FF	耳	$\perp \downarrow$	$\bot \bot$		\bot
Sample ID		1/12/00		Water			2	1			-				X	4	1		
0002 F007	MS/INSD	1712/00	1215	1	1-1	_	1	士		1	#_	H	_		X	1			
0002 F 000			1425		1-1	_	1	1		_		H	\pm	$oxed{\mathbb{H}}$	X			士	
002 F 010		1	1515	1	11	_		\mp							- 1	++	**	\pm	
0002F011		 								\prod					$\perp \perp$	$\bot \downarrow$	41	\perp	
								1				Ш		\coprod	11	\mathcal{A}	$\bot \bot$	1-	Ц.
										\prod	\perp	\sqcup		\sqcup	$\downarrow \downarrow$	41		+	
	100					L			\perp	$oxed{oxed}$	\bot	Ц	\perp		41	\dashv	\dashv	+	├- ├-
	A CONTRACTOR OF THE PROPERTY O							\perp			-∦-		\square	A			\dashv	4	+
-/							$\downarrow \downarrow$	_	4-	\mathbb{H}	-#-	$\downarrow \downarrow$	X	44	+		\dashv	+	1
					_	↓_		-	-	11	$\vdash \parallel$	\checkmark	H		+	-+-		+	++
		<u> </u>		10		<u> </u>		\perp		Ш		1_			لـلــ	لــلــا			11
			lame (pri	nt)	T			C	om	pan	y N	lan	ne			T	ate	T	Tim
0 1.11		John	Fortun		\dashv	R	+1			ipu n						17	12/100	0 1	545
Reliminished by:	2 P		Possel							vero			4/				12/00		154.
Received by:	() () () () () () () () () ()	Pan			_			ΣĘ								1	10/0	10	64
Relinquished by:		2 15	4 79	most	3		7	4	-5	7						1	12-	00	4
Received by:										٠.								\perp	
Relinquished by:																		\perp	<u></u>
Received by:																		\perp	
Relinquished by: Received by:		ir. Recen jejved sy		0'1	od													<u> </u>	
Turnaround time/remarks:	Tita	<u>0.25</u> 54	ED. Mar	CONFESS CHAN	**														

San Francisco Office															,
San Francisco Onice	Cha	in of C	ustody	Recor	d						•	Ę	age/	of	i
135 Main St. Suite 1800			•								P	reserv	ative Ad	ided	
San Francisco, CA 94105	PO#	Lab:		(510)											
415-543-4880	0.00 2 5	C 1- 1		486	No /	Cant	ainar	Types			A	nalvsi	is Requ	uired	
Fax 415-543-5480	99-285	Curtis &	Tompkins	13944	140.7	CORU	TIME	Types	1	7	1	1 8	is recei		
Project name:	T(EMI technical contact:	Field samplers:		0 4						B _S] 5	bles M.			
Parcel BRAMP Wells	Rance Molli (415)212-8278 THEMI project manager:	J- Furtu	ns / D.	Vosselt	قِ ا	ے ا	1 1			4 5	2 4 2	1 2 3			1 } }
Project number:	TtEMI project manager;	Field samplers	signatures:		40 ml VOA 1 Liter Amber	1 Liter Poty Brass Tube	Class Jar		Ş	CLP SVOA CLP Pest/PCBs	CLP Metals	TPH Extractables			
CTD -270	Tom Shaf (415) 222 - 8347	Ma	>/_			3 8	ass		1	3 3	5 5	E X			
Sample ID	Sample Description/Notes	Date	Time	Matrix	8 -	- 6	0		0	ပျပ	O				
ODDLF 013		1/13/00	0950	Water		-						$\perp X$	+		111
- GOOZ FO14		1	1110	1	1-	-	1-1			\pm		$\perp \mid X$			
			1215		1	[]-	+		╂┤		-	$\pm \mathbb{X}$	<u> </u>	 	
- 0002 FUIS		 	1313		1	111-	1-7	++	Π	-	} }	+ x		1-1-1	
			145W			11			\blacksquare		\Box	ΤX	1+	+-	
- DUULFUL7		 	0924			- 11 -	\Box	$+\bot$		+	$\overline{+}$	+ x	17		
- 0002 P 003 A		+	1221			+11	+-			-		+ X		$\overline{+}$	
- 0002 POOSA		+	1357		##	1	##		+		#	- X	1-	+	
+ 0602P047		+	1429		11	村.		+	#		#	X	1-1-	\Box	
- 6005 Dans		+	1414	1-1,		-11	1		#	+	++	- 1	111	117	
- 0000 2 POO 9	1 Aug	V	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	 		++	-	71 +	╫		1	十	111		PH
	+ ()	+	1 6			++	+ 7		+		++	11	1	711	
			<u> </u>	1			_1_9		_11	ll				++-	<u> </u>
			ame (pri	nt)			Co	mpany	v N	ame	2		Da	ate	Time
	00		iel Pos		_	a		En				a ta			1736
Reliaquished by:	ex Possett	1000	4 Bd	2017 2016		<u> </u>		1 121	<u>U (</u>	100	W-12	2110	1/1		1727
Received by:	Besjar	1160	7 00	SIDV	_	=	<u>4 /</u>						1000	SICC	
Relinquished by:			<u> </u>		 									-	
Received by:		_											_		
Relinquished by:					+-										
Received by:					+-			-	- <u>-</u>						
Relinquished by:															-
Received by:															<u> </u>
Turgaround time/remarks:						C02	cio	wed Ls	, a	~					
						\ \ \ \ \ \	-10	X 5	0	_					
			•				ميسرا		//						

Chain of Custody Record

143428

•	1	_
Page	O	·

	Cua		ustous.									P	reser	vativ	e Ad	ded		
135 Main St. Suite 1800		Lab:		(510)						\prod	\sqcap	T			\prod			
San Francisco, CA 94105	PO#		•	118/	<u> </u>					╁┵			nolv:	sie II	ent.	ired		
415-543-4880	99-285	Curtis:	Tomokins	1486	No.	/Co	ntai	ner :	lypes	 			mary:	313 1	- Qu		г Т	-
Fax 415-543-5480	(1)	Field samplers		•	ii T	T		1	1				, <u>s</u> <u> </u>		1 !	i '	1-1	
Project name:	TEMI technical contact: (415)		IN Pa	coct	١١,		1 1	1	1 1		5	1	ctables	\$) '	\ \ '		111
Parcel B RAMP Wells	Rance Molly: 212-8278	J. fortuna			╢┰╽┇		ايرا		1 1	≤	A/P	tals	28.	ž I			\	1
Project number:	TYRMI project manager:	2 1412 2417 1	- /			ב ב ה	昌	2		2	S	Σ		11	- 1		11	111
CT0-270	Tom shaff (415) 222-8347	Anga	>/		40 ml VOA	1 Liter Poly	Brass Tube			13	66	5	TPH Extractables	힘				111
Sample ID	Sample Description/Notes	Date	Time	Matrix	14	4	1	=	+	#=					十	+	十	##
	-1	1/14/10	0930	Wester	-		+			1	П			1	\mp	Ŧ	干	#
0002 4019		17/1/11/10	1010		1_1	11.	\bot	_	╅╌╂╸	╬	士			X -	=	+	++	++
0002 F020	-2		1000			11-				\Box	\vdash	+-+		N	┍╌╅╌		$\pm \pm$	$\pm \pm$
0002FOZI		_	1050		+++	+								7 -		14	++	
0002 F022	L	<u> </u>	1215		#-	4	#	F	\mp +				士士	7		1	#	
			1313		#4	4	#		± 1		H			.	\Box		廿	
0002 F009A	- 6		14/09			Ц.	7			$-\parallel$	┼-┼-	+		<u>Ŋ</u> -	H	\top		士士
0002 F023			0945		\mathbb{H}	il	+	1	11			4		<u> </u>	坩	7	\dashv	-
0002 POII	>	- 	1215			il	\top				┼┼	+-	-+	X.	土土			\Box
21 @ 9 Spo	3 MS/MSD -8		1213		+	` +			\dashv		17	-	F	X	1-+	-+-+	++	
0002 PØ13	> -9		1250	ļ	#	4	\pm			#	++	+	 	V	耳	#	$\dashv \dashv$	7
0002 PO14	-10		1310		-#-	4	7	+-+		-#	++	_			+			口
φφφ2 P φ φ2A	-11		1400		<u> </u>	-	+	++		+	##	\top	$ar{\Box}$	7	\prod	++		1
					II	Ш			L	سلل			1			1		

^	Name (print)	Company Name	Date	Time
Relinquished by: a Pascell	Daniel Posselt	R+M ENV.	1/14/00	T 1
Received by: Cowl Worthour	Carol Wortham	C+1	7/4/00	
Relinguished by:				
Receives by:				
Relinquished by:				
Received by:				
Relinquished by:				
Received by:				

Turnaround time/remarks:

Received cold and intact over the counter.

Chain	of	Custody	Record
-------	----	---------	--------

	. 9
Page _	(%)
lagt _	<u> </u>

135 Main St. Suite 1800	Cita		astouj	INCCOL											rag			0.		1
San Francisco, CA 94105													Pr	esei	rvati	ve A	Addeo	d		
	PO#	Lab:									T									T
415-543-4880	00.000		_		<u> </u>					+			4	ᆜ	<u> </u>	<u>_</u>	-			
Fax 415-543-5480	992262. MOD Ø01	Severn -	Trent (8)	12)655-1203	No.	./Co	nta	iner	Types				An	laly	/SiS	Req	luire	2 d		
Project name:	TtEMI technical contact:	Field camplers:								11 1				8						
Parcel B RAMP wells	Ramen Moezz: 222-8278	J. For	-tm			<u>.</u>						<u> </u>	ples	aple			1			
Project number:	TtEMI project manager:	Field samplers'			 	ê è	۾ ا			≼	8	7 3 S	200	Ĕ						
Cto 270	Tom Sheff (415) 222-8347	he	2		40 ml VOA	1 Liter Amber 1 Liter Polv	Brass Tube	Glass Jar		P VO	yS d	CLP Pest/PCBs	H Pu	TPH Extractables						
Sample ID	Sample Description/Notes	Date	Time	Matrix	\$	= =	8	5		ರ	5	5 5	5 5	Ξ	_					
9950 FOE1	ms/msb	12/17/99	1315	Water	8	4/2]-	-		X	-	-)	$\langle X \rangle$	1X		\Box	4		\mp	\dashv
9950F08Z		12/17/99	1350	Water	2			\Box	\perp	X				П		\prod	$\perp \perp$	\perp	\perp	\blacksquare
			· · · · · · · · · · · · · · · · · · ·				1						1							
					╫╼┼	_	 	t	1-1-	#	\Box	\top	+	+++	+	++	+++		+	1
					11		+	++		-}-	╁┤	\dashv	+	+-+	-	+++	-	\vdash	+-	
	<u> </u>	<u> </u>			₩-₩					#	\vdash			+		++			+-	\vdash
										\bot	\sqcup			\perp		$\downarrow \downarrow$!	\vdash		
																				i I.
					$\parallel \parallel$							\Box								
			······································				1	11		1	\Box	7	+	\Box				\sqcap	\top	\Box
					$\parallel \perp \parallel$	\dashv	+	+	++	-		\top	+	++		+++	+	\vdash	-	\vdash
		-			+			1-1	++	+	+	-	+	++		+-+	+	\vdash		+-
		-			+		4	++		+	-	-	4	$\downarrow \rightarrow$	-+	++		\vdash	+	\dashv
						L		11		_lL_	\perp	Ш		\perp	Ш_	11		Ш		Ш

	Name (print)	Company Name	Date	Time
Relinquished by:	John Forther	R+M Finuinomental	12/17/94	1600
Received by: 1 Religions to FEDEX				
Relinquished by:			/	
Received by:	DON DAWILLIE	574	12/2/90	1015
Relinquished by:			12/12/149	
Received by:				
Relinquished by:				
Received by:				

Turnaround time/remarks:

Sta-lard

FedEx A:16:11 # 8121 8868 1680

Chain of Custody Record

		9	
	1	00	i
Page		_త _	

San Fannsium CA 04105											12.	eserv	ative	Add	ed		
San Francisco, CA 94105 415-543-4880	PO#	Lab:	(802)						3	1	() H	(Q/M					
Fax 415-543-5480	99-262 mol 1	Severn 7	Treit 655-120	3	No.	/Co	ntain	er Types			An	alys	is Re	equi:	red		·· ,
Project name:	TtEMI technical contact:	Field samplers	:							\top		ક ફે	4				
Parcel B RAMP WELLS	Ramen Moezzi (415)222-8278	J. Fortu	na/D. Posselt		<u>د</u> ا ا					PCBs	CLP Metals TPH Purgeables	CLF Mchy (Filtery					
Project number:	TtEMI project manager:	Field samplers	' signatures:		0 4	2	å å	1 1	8	5 5	urg leta	T T	1				
CTU-270	Ton Shoff (415) 222-8347				40 ml VOA	1 Liter Poly	Brass Tube Glass Jar		LP V		E E	PHE]				
Sample ID	Sample Description/Notes	Date	Time Matr	ix	8 -	-	ਛ ਹ		ا تا تا		O F	F 3	<u> </u>		$\perp \downarrow$		
0002F001		1/11/00	0751 Water		2				X						#	##	#
OUUZ FOOZ		1	1100		4 2	12	+-	 	X		$\times\!$	XX	1=	士士	##	士	
0002 F003			1235		4 2	2	_		X	\pm	ΧX	ľΧ		#	井	\pm	土
0002 F004	·		14300		4 2	12		<u> </u>	\mathbb{Z}	+	XX	XX	<u> </u>	井	#	#	
0002 F005	-	V	1517		4 2	2 2	=	 	X	\perp	XX	XX	} :=	##	##	##	_
			. /									\vdash		1-17	\perp	$\perp \perp$	
		./												111	$\downarrow \downarrow$	$\perp \downarrow \downarrow$	
													\coprod	\coprod	\perp		
	180	. /												$\coprod \!$		\square	
	Con Ton	,														4	
															\mathbb{Z}		
					11			11									
			· · · ·														

	Name (print)	Date	Time	
Relinquished by:	John Forting	R+M Environmental	1/11/00	1700
Received by: Relinguable to FEDEX				
Relinquished by:				
Received by:				
Relinquished by:				
Received by:				
Relinquished by:				
Received by: SCAM ->	Scott Lavigne	574	1(12)00	1000

Turnaround time/remarks: Standard

FedEx A: Liu # 8122 0276 9418

Chain of Custody Record

135 Main St. Suite 1800			•						Γ			Pr	eserv	vative	Adde	d		
San Francisco, CA 94105	PO#	Lab:		(802)]					<u>\$</u>		ङ्क् रे						
415-543-4880	00 20 4 11		- (•					-	<u></u>	LJ:						11	L.,
Fax 415-543-5480	99-262 Mod L	Severn T	rent 6	55-120}	No./	Con	itair	ier lyp	es			Ar	latys	315 Ke	quire			Ţ
Project name:	TtEMI technical contact:	Field samplers:	;									8	3					
Parcel B RAMP Wells	Rameen Morezi (415)222-8278	J. For	tina/D.	Posett	<u> </u>						PCB.	Sable	ctab					
Project number:	TtEMI project manager:	l kiela commierc	'cionaturec·		8 8	[S	취 .			8 8	l Se	eta urg	xtra					
CT0-270	Tom Shoff (415) 222-8347	for	42		40 ml VOA	1 Liter Poly	Brass Tube			CLP VOA	LP P.	LP M	PHE					
Sample ID	Sample Description/Notes	Date	Time	Matrix	3 =		# C					OF	L	+			\vdash	-
0002 F 006		1/12/00	0800	Water	2 -					X -				##		 		
0602 F007	MS/MSD		1015		8 4	2				<u> </u>	+-	X X	X	++	###	=	+	\vdash
0602 F008			1215		4/2	11	_			X	\dashv	$X \mid X$	X -	#=	++-	=	#	=
0002 F009			1452		2 -	\perp	_	++		X	\Rightarrow			++			+	
0002 FUID			1425		4/2	-	_	++-		X-	#	X X	A.	#		\Box	\Box	E
0002 FOII			1515		4 2	-11	\pm	++	+	<u> </u>	+-	X X	<u> </u>	##			\Box	F
00021001			0830		Z ·	\pm	\dashv		+=	X	#	_	##	1		1	##	1
00021002			1359		2	$\pm \pm$	_	++	+	X-	+		+	+		#	##	‡
00021003			1405		2	1	_	 	\pm	Χ.	+-	=	#	++-		==	#	+
0002 P004		<u> </u>	1516	<u> </u>	2.	++			+	X.			 	+	1	#	##	丰
					$\parallel \parallel$	11			+		$\downarrow\downarrow$	_	1	+	+	#	#	+
						1						1	1	11			<u></u>	
			····		,										D-4-		T:	

Name (print) Company Name						
John Frima	R+M Environmental	1/12/00	1730			
DON DAWICUIT	STC	1/13/00	0930			
			<u> </u>			
	John Frima	John Frima R+m Environmental	John Frima R+m Environmental 1/12/08			

Turnaround time/remarks: 5TANDALD

VOA analysis for sample 0002 FOID is CLP Low-level VOA
11 0002 FOOT is also CLP Low-level UDA

FeJEX Airbiy # 8/22 0276 9429

76606. 76624

Chain of Custody Record

135 Main St. Suite 1800			•								Preser	rvative	Added		Ö
1	PO#	Lab:							고	\$	<u>.</u>				
415-543-4880	99-262 mol 1	c 1	٠	,	No	/Conf	ainer '	Tynes				sis Re	equire	d	
Fax 415-543-5480	· · · · · · · · · · · · · · · · · · ·	Severy T	1547		110.	Com	anici	Types	╁	т-т		1			1-7-
Project name:	TtEMI technical contact:	Field samplers:								<u>s</u>	\$ 3E				
Parcel B RAMP Wells	Ranger Meer; (415) 122-827	J. Fur			<u>ز</u> ا			 		<u>د</u> [دّا.	cabl		111		
Project number:	TtEMI project manager:	Field samplers'	signatures:		0 5	2 4	, a		8	Se E	urg Xtr				
CTO -270	Ton Shoff (415) 222-8347	I In Ca	An =	>	40 ml VOA	1 Liter Poly	ass J	1	7 9	CLP Pest/PCBs	TPH Purgeables TPH Extractables				
Sample ID	Sample Description/Notes	Date	Time	Matrix	3 -		5 5		1212		FF				
0002 FO12		1/13/00	0807	Water	2	4-1-			X			++	+++		
0002 F 0 13		1	0950	1	4:	2] -			· X -		XX	+	+++		-
0002 F014			1110		4 7	211-			X -	十八	AXX				++
0002F015			1215		4	2 1 -	-		- X-	$+\pm\lambda$		_	++ +		++
DUOZ FUIL			1313		4:	2 i -			M	$+ \$		+	##	1	++
0002 FU17		\downarrow	1450	1	4	211:	+		- X -	<u> </u>	XX	##	###		1-1-
1										17		_ -	+ + +		
	1.								11	/	4-4-4		$\downarrow\downarrow\downarrow$	44	+1
		`		/				11	$\bot\!\!\!\!\bot$	4	4-4-1		44		
							11		11	<u> </u>					
						\Box				\prod					
					11					4					
		T		4			Con		. Nic				Date	Ti	ime
		N	ame (pri	nt)				pany			,				
Relinquished by:		Joh	· Fur	tuna		Rf1	1 E	NUNO	mo	mp.	<u> </u>	i/	13/60	$\perp \perp \perp /$	73 C

Relinquished by:

Received by:

Received by:

Relinquished by:

Received by:

Relinquished by:

Received by:

Rece

Turnaround time/remarks: Stunder1

Chain of Custody Record

	0
	1 9 1
Page	<u> </u>
	0

135 Main St. Suite 1800			•							Preserv	vative Ac	ided	
San Francisco, CA 94105	PO#	Lab:						77		5			TII
415-543-4880	99-2262 Mod 1	Sa	wnI					=4-	I_I			<u>-</u>	
Fax 415-543-5480	1122027601	رح د.	01	アピハコ	No./	Conta	iner Types			Analys	sis Requ	iired	
Project name:	TtEM1 technical contact:	Field samplers:								S			
L Parcel B Ramp Wells	Ramein Moest (+15)222-3278	DPoss	e H		2				ر آڇا	eables ictables			
Project number:	TtEMI project manager:	Field samplers'	signatures:	1	V W	Poly ube	<u>ا</u>	8 8	15 2	2 E			
C70-270	Tom Shoff (415)222-8347	Field samplers'	-ell	asselt	40 ml VOA 1 Liter Amber	1 Liter Poly Brass Tube	Glass Jar	CLP VOA	P P	TPH Extra			
Sample ID	Sample Description/Notes	Date	Time	Matrix	3 =	- m	5	00	0 0	FF			\bot
6402 POG6		1113/00	083°	witcs	2			X					
4042P003A	·	1/13/04	4903/2090	S I	2								
64428043A	·	1/13/00	0924			-			12	4 + +			$\exists \bot \bot$
OCOO 2 P PP3A		1/13/00	U890/68	12	-2	-				十四	111		$\perp \downarrow \downarrow \downarrow$
<i>Φ</i> 4 φ2Ρ 4 φ3Α		1/13/04	Ø851/ Ø 85	2	-4				2	+++			###
\$\$\$\$\$P\$\$\$A		1/13/44	1220		42			X		XX		<u> </u>	+11
ΦΦΦΖΡΦΦSΑ		1/13/00	1221		1-				<u>- </u> >				11
PP42 5007		1/3/00	1357		42	-		X-		$\sqrt{\lambda}$	+++		++-
LUCUZ POOS		1/13/00	1+29		42			X-	<u> </u>	<u> </u>	1		++-
paper Pup9	= OPass	1/13/24		· V	4 2			X	1	<u> </u>			444
	7 James	7						+	\square			 	
									1/1	+++			

	Name (print)	Company Name	Date	Time
Relinquished by:	Daniel Posselt	Atm Environmental	1/13/00	1730
Received by: Relinguished to fed Ex				
Relinquished by:				
Received by:				
Relinquished by:				
Received by:				
Relinquished by:				
Received by: Scatt 2	Scott Lavigne	STL	1/14/100	0430

Fel Ex A: ():11 # 8122 0276 9434

135 Main St. Suite 1800	Cna	in of C	ustoay	Recor	u											ſ <u> </u>	1 3
San Francisco, CA 94105													vativ	e Add	led		}
	PO#	Lab:		(802)					¥		ile E	1 3	Σ				i l
415-543-4880	90 7/2		<i>I</i>			-	4	T	1					kequi	rod		
Fax 415-543-5480	99-262 mod 1	Severn	Trent 1	553-1603	No./	Con	tainer	Types						equi	leu		
Project name:	TtEMI technical contact: (415)	Field samplers	:					1 1				≥اق ا	<u> </u>				.
Parcel B RAMP Wells	Ramein Moezzi 222-8278	J- Fo	rtuna		5					ğ	1 4	actables	3				
Project number:	TtEMi project manager:	Field samplers	signatures:			oly 3	ا يا ق			<u> </u>	etal	ר בי	2	1.	11		
CT0-270	Ton Shoff (415)272-8347	John	Ac		40 ml VOA I Liter Amber	I Liter Poly	Glass Jar		LP VC	LP SV	LP M	TPH Extractables	3				
Sample ID	Sample Description/Notes	Date	Time	Matrix	\$ <u>_</u>	= 6	5 U		미미	ت ات	O F		3	$\bot \bot$	$\perp \perp$		
DOOL FOIS		1/14/00	0827	Water	2 -		+-		X	-			-			-	
0002 FO 19			0930		46	11.	4		+	XX	$\langle \chi \rangle$	(X)		++			
O OOL FO LO			1010		46	11-	+		-	XX		(X)	1 ± 1				
0002F021			1050		46	, 1 -		+-		X X		(X)-	$\pm \pm$	++			
0001F012			1215		4 2	. 1	-		X	-	$X \rangle$	XXI-		++			
0002 F009 A			1313		21		+		+-	_	X	(X)	++	_			
0002 F023			1409		4 2	-11	-		X	+	X	XX	+				
1	1		1				11					1		$\perp \downarrow$	$\perp \perp$		
	1					\prod				1	\prod			$\downarrow\downarrow$		4	-
									11			1/	$\perp \perp$		1	\perp	<u> </u>
												1/1		1	\perp	 -	
							Y										
	·								N T					Dat		T:	
		N	ame (pri	nt)			Con	npany	/ Na	ıme	•			Date	6	111	me

	Name (print)	Company Name	Date	Time		
Relinquished by:	John Fortuna	R+m Environmental	1/14/00	1634		
Received by: Religguished to fed Ex	1					
Relinquished by:						
Received by:		·				
Relinquished by:						
Received by:		1				
Relinquished by:						
Received by: Scatt 2	Scott Lauigne	574	1/15/00	1100		

Turnaround time/remarks:

Standari

FedEX Airbill # 8122 0276 9440

Chain	of	Custody	Record
-------	----	---------	--------

135 Main St. Suite 1800	Cila		usiouy	Mecon	ų							r	rage		_ //	
			•								~Pı	reserv	ative	Adde	d	_
San Francisco, CA 94105	PO#	Lab: Seve	, T ~=]				丑		五云			.	1	18
415-543-4880	99-262 Mod 1				ļ				+	;			ليل			
Fax 415-543-5480	1, 202 1,001	C802)	155 - 120	3	No./	Con	taine	r Types			Ar	ıalys	is Re	quire	ed	
Project name:	TtEMI technical contact: (4(5)	Field samplers:				Π	77			TI		8				1 1
Parcel B RAMP Wells	Ramon M0027, 222-9278	D. P.	osse lt		Mber mber					Š	ables	ctable				
Project number:	TtEMI project manager;	Field samplers'	signatures:	٨	VO V	S S	וב צַ		<u> </u>		eta Erge	E I				
CTO-27\$	Toushoff 222-8347	Dan	Lal Po	sselt	40 mi VOA 1 Liter Am	1 Liter Poly	Glass Jar		P VC	LP Pe	CLP Metals TPH Purgeables	PH E				
Sample ID	Sample Description/Notes	Date	Time	Matrix	용 =	= 6	5 G		5 5		OF	F			\perp	$\bot\bot$
\$\$\$\$2P\$1\$		1/14/00	0830	water	2				X							
\$\$\$2 P\$11			0945	1	42	. 1			X		Χ×	X				
\$\$\$\$2 P\$12	2 MS/MSD		1215		42				X		XX	[X				
ΦΦΦ2 PΦ13) Csame sample)		1250		42				X		\sqrt{X}	X				
6002P614			1310		4 2				X	7	XX	X				
\$\$\$\$27\$\$\$2A	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	V	1400		22						X	$\langle X \rangle$				
	15	1		1	# 1	1'1		h								
	Dona															
		1				17										
			-			1										
					IV		1					T				1

	Name (print)	Company Name	Date	Time
Relinquished by:	Daniel Posselt	Rand M Environmental	1/14/00	1630
Received by: Relinquished to Fed Ex				
Relinquished by:				
Received by:				
Relinquished by:				
Received by:		ı		
Relinquished by:				
Received by: Scatt 2	Scott Larigne	STL	1115100	1100

Turnaround time/remarks:

Standard

Fed Ex Airbill # 8122 0276 9440

APPENDIX D

JANUARY 2000 DATA VALIDATION REPORTS

Ted Review 3/23/00 by Roman Moggi /THENI

Hunters Point Shipyard

Parcel B Ramp Wells

Prepared for

Tetra tech EMI

Severn Trent Laboratories Laboratory Project ID 76381

1.0 Introduction

This report summarizes the technical review of analytical laboratory sample results generated in support of sampling and analysis activities at Hunters Point Shipyard. The criteria applied for this review are consistent with the project specific guidelines, in conjunction with analytical method protocols (see section 8.0 for specific references). In cases where specific guidance was not available from either of these sources, the data have been evaluated using professional judgement consistent with industry standards. The review included evaluation of sample collection, holding time, and summary information for blanks (to assess contamination), sample duplicates (to assess precision), laboratory control samples and calibrations (to assess accuracy) and matrix spike and surrogate recoveries (to assess matrix effect). Verification of laboratory system performance, compound identification, analyte quantitation, and reporting limits was performed on designated samples.

The report is arranged by method; within each method section is a sub-section identifying each noncompliance, qualifier and associated samples. Appendix A summarizes all qualified data, and Table 1 defines data validation qualifiers and comments.

I certify that all data validation criteria described above were assessed, and any qualifications made to the data were in accordance with the cited reference documents.

Prepared by ETHIX

3/22/00

SDG:

76381

Introduction

1

2.0 Sample Collection, Preservation and Handling

The following samples and analysis methods are associated with this Sample Delivery Group:

THE	FTAI	
100		

Lab ID	Field ID	Sample Type	Matrix	Date Collected
405286	9950F001	Full Validation Sample	WATER	12/17/99
405286DP	9950F001D	,	WATER	12/17/99
405286MS	9950F001MS		WATER	12/17 / 99
TPHEXT				
		Sample		Date
Lab ID	Field ID	Туре	Matrix	Collected
405286	9950F001	Full Validation Sample	WATER	12/17/99
405286MS	9950F001MS	•	WATER	12/17/99
405286MSD	9950F001MSD		WATER	12/17/99
TPHPRG				
Lab ID	Field ID	Sample Type	Matrix	Date Collected
407000	9950F001	Full Validation Sample	WATER	12/17/99
405286 405286MS	9950F001MS	1 dis validation dampio	WATER	12/17/99
405286MD	9950F001MSD		WATER	12/17/99
VOA				
Lab ID	Field ID	Sample Type	Matrix	Date Collected
405006	9950F001	Full Validation Sample	WATER	12/17/99
405286	9950F001MS	i an vanastori varipio	WATER	12/17/99
405286MS	9950F001MSD		WATER	12/17/99
405286MD 405287	9950F002	Trip Blank	WATER	12/17/99

One of four amber liters for sample 9950F001 was received at the laboratory broken. Cooler temperatures were within 2 - 6° C upon arrival at the laboratory.

3.0 CLP Volatile Organics by GC/MS

3.1 Calibrations

Due to continuing calibrations problems, the following nondetected results are qualified as estimated (UJ7):

Date Analyzed: 12/21/99	cc	
Analyte	%D	Q
2-BUTANONE	-51.1 /	J7 / UJ7
2-HEXANONE	-66 /	J7 / UJ7
ACETONE	-83.2	J7 / UJ7
Associated 9950F001	9950F002	

According to the TtEMI Statement of Work, if the continuing calibration %D exceeds 25%, apply J7 to all detected results, apply UJ7 to all non-detects

Full Validation for Sample 9950F001

3.2 GC/MS Tuning

The ion abundance criteria were met for the bromofluorobenzene (BFB) GC/MS performance check. The sample was analyzed within 12 hours of the associated performance check.

Target Compound List Identification

The relative retention times, mass spectra, and peak identifications of the sample was evaluated. Target compound identification was considered to be correct.

Compound Quantitation and Reported Detection Limits

Sample results were recalculated with the proper dilution factors and volumes used to calculate the sample results. The sample was found to be correctly quantitated. The reported detection limits were consistent with TtEMI's required report limits and reflect any dilutions and volumes used.

System Performance

The sample was evaluated for reconstructed ion chromatogram (RIC) baseline shifts, extraneous peaks, loss of resolution, and peak tailing. No system degradation was noted.

Tentatively Identified Compounds (TICs)

The sample spectra and library searches were evaluated. TIC results were recalculated and found to be correct. All identified compounds were reported with the "NJ" qualifier.

Note Fren TICs in sample 9950FOOI (POC well IRZGAW41A)

4.0 TPH Extractables by GC/FID (Modified SW8015)

All cursory requirements were met by this method.

Full Validation for Sample 9950F001

4.1 Compound Quantitation and Reported Detection Limits

Sample results were recalculated with the proper dilution factors and volumes used to calculate results. The sample was were found to be correctly quantitated. The reported detection limits were consistent with TtEMI's required reporting limits and reflect any dilutions and volumes used.

System Performance

The sample was evaluated for baseline shifts, extraneous peaks, loss of resolution and peak tailing. No system degradation was noted.

5.0 TPH Purgeables by GC/FID (Modified SW8015)

All cursory requirements were met by this method.

Full Validation for Sample 9950F001

5.1 Compound Quantitation and Reported Detection Limits

Sample results were recalculated with the proper dilution factors and volumes used to calculate results. The sample was found to be correctly quantitated. The reported detection limits were consistent with TtEMI's required reporting limits and reflect any dilutions and volumes used.

System Performance

The sample was evaluated for baseline shifts, extraneous peaks, loss of resolution and peak tailing. No system degradation was noted.

6.0 CLP Metals

6.1 Blanks

Due to laboratory blank contamination, the following results are considered nondetected (U1):

Matrix:

WATER

Prep Date:

12/27/99

Analysis Date:

12/29/99

Blank ID		Analyte	Result		DL	Units
PBW11						
		THALLIUM	3.9	/	2.7	UG/L
		ZINC	6.5	1	1.6	UG/L
			Qualified Result			
Affected Sa	mples:		I (Court		,	
9950F001	WATER	THALLIUM	5.5 l	J1 /	2.7	UG/L
9950F001	WATER	ZINC	9.2 ل	J1 /	1.6	UG/L

According to the TtEMI Statement of Work for Hunters Point, if a target analyte is found in any blank at a level > DL, all associated results <5X the amount found shall be qualified as nondetected at the level detected (U1). If any target analytes are detected in any blank at a level > CRDL, all associated results must be > 10X the amount found in the blank or all associated batch samples should be redigested and reanalyzed.

Due to negative drift observed in laboratory blanks, the following results are considered estimated (UJ1):

Matrix:

WATER

Prep Date:

12/27/99

Analysis Date: 12/27/99

Blank ID	•	Analyte	Result		DL	Units
ССВ		CHROMIUM	-9.7		0.9	UG/L
ССВ		MERCURY	-0.1 /	•	0.1	UG/L
Associated	Results:		Qualified Result			
9950F001 9950F001	WATER WATER	CHROMIUM MERCURY		UJ1 UJ1		UG/L UG/L

According to the TtEMI Statement of Work for Hunters Point, all results are considered for qualification using the 5X rule applied to the highest blank contaminant concentration as stated in the National Functional Guidelines (EPA 1994); if negative drift >IDL is found, qualify all nondetected and detected results < 5X the value as estimated (J1UJ1).

6.2 **Matrix Spikes**

Due to accuracy problems in the MS analysis, the following detected result is qualified as estimated (J3):

MS BATCH ID:

PBW11

Dil Factor:

MS/MSD ID:

9950F001MS

Prep Date:

12/27/99

Spiked Sample: **MATRIX:**

405286MS WATER

Analysis Date:

12/29/99

ANALYTE

% Recovery

Limits

Q

MANGANESE

73.4

75- 125

J3/UJ3

Associated samples: 9950F001

Project-established Limits

According to the TtEMI Statement of Work for Hunters Point, if the MS recovery is < LCL, apply J3 to all associated detects and UJ3 to all nondetects; guidelines do not apply when sample concentration exceeds the spike concentration by a factor of four

(Note mangemere sent vos also qualibéed for precision, which may

6.3 **Matrix Duplicates**

Due to precision problems in the matrix duplicate analysis, the following detected results are qualified as estimated (J2):

	Primary Sample	Dup Sample				1	
Analyte	9950F001	9950F001D	CRDL	Units	RPD	Limit	Q
MAGNESIUM	124000 <	76000 <	5000	UG/L	48/	20	J2
MANGANESE	1730	865 /	15	UG/L	67 /	20	J2

Associated

samples:

9950F001

76381

According to the project guidelines, for water matrix, if the RPD is >20% and both sample results are >5X CRDL, flag all associated batch samples J2; if either or both sample results are <5X CRDL, the control limit shall be +/- 1X CRDL

6.4 Other Qualifications

The following results are qualified as estimated (J):

		Reported							
Sample ID	Analyte	DF	Result	Units	Q				
9950F001	BARIUM	1	38.5	UG/L	J				
9950F001	COBALT	1	2.8	UG/L	J				
9950F001	MOLYBDENUM	1	2.6	UG/L	J				
9950F001	NICKEL	1	36.5	UG/L	J				
9950F001	POTASSIUM	1	1340	UG/L	. 1				
9950F001	VANADIUM	1	9.9	UG/L	J				

According to the TtEMI Statement of Work, any detected results reported below the RL should be flagged J

Detected results reported below the RL are considered qualitatively acceptable, but quantitatively unreliable due to the uncertainty in analytical precision near the limit of detection.

Full Validation for Sample 9950F001

6.5 Analyte Quantitation and Reported Detection Limits

Sample results were recalculated with the proper dilution factors and volumes used to calculate results. The sample was found to be correctly quantitated. The reported detection limits were consistent with TtEMI's required reporting limits and reflect any dilutions and volumes used.

Prepared by ETHIX
3/22/00

7.0 Overall Assessment of Data

Usability

Due to calibration problems in the volatiles analyses, nondetected 2-butanone, 2-hexanone and acetone results for two samples are qualified as estimated.

Due to laboratory blank contamination in the metals analyses, detected thallium and zinc results for one sample are qualified as nondetect. Due to laboratory blank negative drift, nondetected chromium and mercury results for one sample are qualified as estimated. Due to poor matrix spike accuracy, detected manganese results for one sample are qualified as estimated. Due to poor sample duplicate precision, detected magnesium and manganese results for one sample are qualified as estimated.

The quality control reviewed, other than those discussed above, were met and are considered acceptable. Sample results that were found to be rejected (R) are unusable for all purposes. Sample results that were found to be estimated (J) are usable for limited purposes only. Based upon the cursory and full data validation all other results are considered valid and usable for all purposes. In general, the absence of rejected data and the small number of qualifiers added to the data indicate high usability.

8.0 References

"Data Validation Guidelines for CLP Organic Analyses", TtEMI, March 20, 1997

"Data Validation Guidelines for Non-CLP Organic Analyses", TtEMI, March 20, 1997

"Data Validation Guidelines for CLP Inorganic Analyses", TtEMI, March 20, 1997

"TtEMI Comprehensive Long-term Environmental Action Navy II Analytical Services Statement of Work" (May 5, 1997)

"USEPA Contract Laboratory Program National Guidelines for Organic Data Review" (February 1994)

"USEPA Contract Laboratory Program National Guidelines for Inorganic Data Review" (February 1994)

10

Appendix A

Data Quality Summary

by Analysis Type

Laboratory Project ID 76381

Sample Delivery Group

76381

VOA

	Data Points	% of Data	% of Qualified Data	Bias (low/none/high)
TOTAL DATA POINTS:	70	-	-	-
TOTAL QUALIFIED DATA POINTS:	6	8.6%	-	· -
TOTAL REJECTED DATA POINTS:	0	0.0%	-	-
Qualified/Rejected as a result of:				
UJ7 - compound is estimated due to cal. exceedance	6	8.6%	100.0%	N

Sample Delivery Group

76381

TPHEXT

	Data Points	% of Data	% of Qualified Data	Bias (low/none/high)
TOTAL DATA POINTS:	2	+	•	-
TOTAL QUALIFIED DATA POINTS:	0	0.0%	-	-
TOTAL REJECTED DATA POINTS:	0	0.0%	-	-
Qualified/Rejected as a result of:				

No qualified data

Sample Delivery Group

76381

TPHPRG

	Data Points	% of Data	% of Qualified Data	Bias (low/none/high)
TOTAL DATA POINTS:	1	-	-	-
TOTAL QUALIFIED DATA POINTS:	0	0.0%	-	-
TOTAL REJECTED DATA POINTS:	0	0.0%	-	

Qualified/Rejected as a result of:

No qualified data

Sample Delivery Group

76381

TMETAL

	Data Points	% of Data	% of Qualified Data	Bias (low/none/high)
TOTAL DATA POINTS:	24	•	-	•.
TOTAL QUALIFIED DATA POINTS:	12	50.0%	•	-
TOTAL REJECTED DATA POINTS:	0	0.0%	-	-
Qualified/Rejected as a result of:				
U1 - Analyte is nondetected due to laboratory blank contamination	2	8.3%	16.7%	Н
J23 - Multiple Reasons	1	4.2%	8.3%	L
UJ1 - Analyte is estimated due to negative drift	2	8.3%	16.7%	L
J - Result is > the MDL but < the PQL	6	25.0%	50.0%	N
J2 - Analyte is estimated due to laboratory duplicate precision exceedance	1	4.2%	8.3%	N

TABLE 1

DATA VALIDATION QUALIFIERS AND CODES

U1	Compound is nondetected due to laboratory blank contamination
U2	Compound is nondetected due to field blank contamination
U4	Compound is nondetected because of common laboratory contamination
J0/UJ0	Compound is estimated due to internal standard exceedance
J1/UJ1	Compound is estimated due to noncompliant instrument performance criteria
J2/UJ2	Compound is estimated due to laboratory duplicate precision exceedance
J4/UJ4	Analyte is estimated due to serial dilution exceedance
J3/UJ3	Compound is estimated due to surrogate/MS/LCS exceedance
J 6	Analyte is estimated due to field duplicate precision exceedance
J5/UJ5	Compound is estimated due to holding time exceedance
J7/UJ7	Compound is estimated due to calibration exceedance
J8	Compound is estimated due to calibration range exceedance
J9	Compound is estimated due to interference check exceedance (metals) or confirmation problems (dual column analyses)
R0	Compound is rejected due to internal standard exceedance
R1	Compound is rejected due to holding time exceedance
R2	Compound is rejected due to surrogate/MS/LCS exceedance
R3	Compound is rejected due to noncompliant instrument performance criteria
R7	Compound is rejected due to calibration exceedance
J	Result is above the MDL but less than the CRQL

DATA VALIDATION REPORT

Tech Review 3/23/00 by Romen Moff /THEMI

Hunters Point Shipyard

Parcel B Ramp Wells CTO270

Prepared for

Tetra tech EMI

Severn Trent Laboratories Laboratory Project ID 76600

1.0 Introduction

This report summarizes the technical review of analytical laboratory sample results generated in support of sampling and analysis activities at Hunters Point Shipyard. The criteria applied for this review are consistent with the project specific guidelines, in conjunction with analytical method protocols (see section 11.0 for specific references). In cases where specific guidance was not available from either of these sources, the data have been evaluated using professional judgement consistent with industry standards. The review included evaluation of sample collection, holding time, and summary information for blanks (to assess contamination), sample duplicates (to assess precision), laboratory control samples and calibrations (to assess accuracy) and matrix spike and surrogate recoveries (to assess matrix effect). Verification of laboratory system performance, compound identification, analyte quantitation, and reporting limits was performed on designated samples.

The report is arranged by method; within each method section is a sub-section identifying each noncompliance, qualifier and associated samples. Appendix A summarizes all qualified data, and Table 1 defines data validation qualifiers and comments.

I certify that all data validation criteria described above were assessed, and any qualifications made to the data were in accordance with the cited reference documents.

1

Certified by

Prepared by ETHIX

Introduction

3/22/00

76600 SDG:

2.0 Sample Collection, Preservation and Handling

The following samples and analysis methods are associated with this Sample Delivery Group:

DMETAL		0		Date
Lab ID	Field ID	Sample Type	Matrix	Collected
	0002F002F		WATER	1/11/00
407063 407065	0002F003F		WATER	1/11/00
407065	1		WATER	1/11/00
407067	0002F004F	Equipment Rinsate Blank	WATER	1/11/00
407069	0002F005F	Equipment Rinsate Diatik	VVAILA	
LVOA		Sample		Date
Lab ID	Field ID	Туре	Matrix	Collected
407170	0002F009		WATER	1/12/00
407171	0002F010	Full Validation Sample	WATER	1/12/00
407176	0002P004		WATER	1/12/00
407321	0002P005		WATER	1/13/00
PEST		Sample		Date
Lab ID	Field ID	Туре	Matrix	Collected
407320	0002P003A	Full Validation Sample	WATER	1/13/00
SVOA		Commin		Date
Lab ID	Field ID	Sample Type	Matrix	Collected
407320	0002P003A	Full Validation Sample	WATER	1/13/00

TMETAL		O-manda		Date
	e: .14 ID	Sample Type	Matrix	Collected
Lab ID	Field ID			
407062	0002F002		WATER	1/11/00
407064	0002F003		WATER	1/11/00
407066	0002F004		WATER	1/11/00
407068	0002F005	Equipment Rinsate Blank	WATER	1/11/00
407168	0002F007		WATER	1/12/00
407168DP	0002F007D		WATER	1/12/00
407168MS	0002F007MS		WATER	1/12/00
407169	0002F008		WATER	1/12/00
407171	0002F010	Full Validation Sample	WATER	1/12/00
407172	0002F011	Equipment Rinsate Blank	WATER	1/12/00
407326	0002F013	•	WATER	1/13/00
407320	0002P003A	Full Validation Sample	WATER	1/13/00
407321	0002P005		WATER	1/13/00
407322	0002P007		WATER	1/13/00
407323	0002P008	Dup of 0002P007	WATER	1/13/00
407324	0002P009	Full Validation Sample	WATER	1/13/00
TPHEXT	E: 4415	Sample Type	Matrix	Date Collected
Lab ID	Field ID	- 775	MIGGIA	
407062R1	0002F002		WATER	1/11/00
407064R1	0002F003		WATER	1/11 <i>/</i> 00
407066R1	0002F004		WATER	1/11/00
407068R1	0002F005	Equipment Rinsate Blank	WATER	1/11/00
407168	0002F007		WATER	1/12/00
407168MS	0002F007MS		WATER	1/12/00
407168MD	0002F007MSD		WATER	1/12/00
407169	0002F008		WATER	1/12/00
407171	0002F010	Full Validation Sample	WATER	1/12/00
407172	0002F011	Equipment Rinsate Blank	WATER	1/12/00
407326	0002F013		WATER	1/13/00
407320	0002P003A	Full Validation Sample	WATER	1/13/00
407321	0002P005		WATER	1/13/00
407322	0002P007		WATER	1/13/00
407323		Dup of 0002P007	WATER	1/13/00
	UUUZPUUB	Dup of Coort Co.		
407324	0002P008 0002P009	Full Validation Sample	WATER	1/13/00

TPHPRG				
.,		Sample		Date
Lab ID	Field ID	Туре	Matrix	Collected
407062	0002F002		WATER	1/11/00
407062R1	0002F002RE		WATER	1/11/00
407064	0002F003		WATER	1/11/00
407066	0002F004		WATER	1/11/00
407068	0002F005	Equipment Rinsate Blank	WATER	1/11/00
407168	0002F007		WATER	1/12/00
407168MS	0002F007MS		WATER	1/12/00
407168MD	0002F007MSD		WATER	1/12/00
407169	0002F008		WATER	1/12/00
407171	0002F010	Full Validation Sample	WATER	1/12/00
407172	0002F011	Equipment Rinsate Blank	WATER	1/12/00
407326	0002F013		WATER	1/13/00
407320	0002P003A	Full Validation Sample	WATER	1/13/00
407321	0002P005		WATER	1/13/00
407322	0002P007		WATER	1/13/00
407323	0002P008	Dup of 0002P007	WATER	1/13/00
407324	0002P009	Full Validation Sample	WATER	1/13/00
VOA				
				Data
	5:-14 ID	Sample Type	Matrix	Date Collected
Lab ID	Field ID	Sample Type	Matrix	
Lab ID 407061	Field ID 0002F001	_ '	WATER	Collected 1/11/00
		Туре	WATER WATER	1/11/00 1/11/00
407061	0002F001	Туре	WATER WATER WATER	1/11/00 1/11/00 1/11/00
407061 407062	0002F001 0002F002	Type Trip Blank	WATER WATER WATER WATER	1/11/00 1/11/00 1/11/00 1/11/00
407061 407062 407064	0002F001 0002F002 0002F003	Type Trip Blank Equipment Rinsate Blank	WATER WATER WATER WATER WATER	1/11/00 1/11/00 1/11/00 1/11/00 1/11/00
407061 407062 407064 407066	0002F001 0002F002 0002F003 0002F004	Type Trip Blank	WATER WATER WATER WATER WATER WATER	1/11/00 1/11/00 1/11/00 1/11/00 1/11/00 1/11/00
407061 407062 407064 407066 407068	0002F001 0002F002 0002F003 0002F004 0002F005 0002F006 0002F007	Type Trip Blank Equipment Rinsate Blank	WATER WATER WATER WATER WATER WATER WATER WATER	1/11/00 1/11/00 1/11/00 1/11/00 1/11/00 1/12/00
407061 407062 407064 407066 407068 407167	0002F001 0002F002 0002F003 0002F004 0002F005 0002F006 0002F007 0002F007MS	Type Trip Blank Equipment Rinsate Blank	WATER WATER WATER WATER WATER WATER WATER WATER WATER	1/11/00 1/11/00 1/11/00 1/11/00 1/11/00 1/12/00 1/12/00 1/12/00
407061 407062 407064 407066 407068 407167 407168	0002F001 0002F002 0002F003 0002F004 0002F005 0002F006 0002F007	Type Trip Blank Equipment Rinsate Blank	WATER	1/11/00 1/11/00 1/11/00 1/11/00 1/11/00 1/12/00 1/12/00 1/12/00
407061 407062 407064 407066 407068 407167 407168 407168MS 407168MSD 407169	0002F001 0002F002 0002F003 0002F004 0002F005 0002F006 0002F007 0002F007MS 0002F007MSD	Type Trip Blank Equipment Rinsate Blank Trip Blank	WATER	1/11/00 1/11/00 1/11/00 1/11/00 1/11/00 1/12/00 1/12/00 1/12/00 1/12/00
407061 407062 407064 407066 407068 407167 407168 407168MS 407168MSD	0002F001 0002F002 0002F003 0002F004 0002F005 0002F006 0002F007 0002F007MSD 0002F007MSD 0002F008	Type Trip Blank Equipment Rinsate Blank Trip Blank Equipment Rinsate Blank	WATER	1/11/00 1/11/00 1/11/00 1/11/00 1/11/00 1/12/00 1/12/00 1/12/00 1/12/00 1/12/00
407061 407062 407064 407066 407068 407167 407168 407168MS 407168MSD 407169	0002F001 0002F002 0002F003 0002F004 0002F005 0002F006 0002F007 0002F007MS 0002F007MSD 0002F008 0002F011	Type Trip Blank Equipment Rinsate Blank Trip Blank	WATER	1/11/00 1/11/00 1/11/00 1/11/00 1/11/00 1/12/00 1/12/00 1/12/00 1/12/00 1/12/00 1/12/00 1/12/00
407061 407062 407064 407066 407068 407167 407168 407168MS 407168MSD 407169 407172 407325 407326	0002F001 0002F002 0002F003 0002F004 0002F005 0002F006 0002F007 0002F007MS 0002F007MSD 0002F008 0002F011 0002F012	Type Trip Blank Equipment Rinsate Blank Trip Blank Equipment Rinsate Blank Trip Blank	WATER	1/11/00 1/11/00 1/11/00 1/11/00 1/11/00 1/12/00 1/12/00 1/12/00 1/12/00 1/12/00 1/12/00 1/12/00 1/13/00
407061 407062 407064 407066 407068 407167 407168 407168MS 407168MSD 407172 407325	0002F001 0002F002 0002F003 0002F004 0002F005 0002F007 0002F007MS 0002F007MSD 0002F008 0002F011 0002F012 0002F013	Type Trip Blank Equipment Rinsate Blank Trip Blank Equipment Rinsate Blank	WATER	1/11/00 1/11/00 1/11/00 1/11/00 1/11/00 1/11/00 1/12/00 1/12/00 1/12/00 1/12/00 1/13/00 1/13/00 1/13/00
407061 407062 407064 407066 407068 407167 407168 407168MS 407168MSD 407169 407172 407325 407326	0002F001 0002F002 0002F003 0002F004 0002F005 0002F007 0002F007MS 0002F007MSD 0002F008 0002F011 0002F012 0002F013 0002F013	Type Trip Blank Equipment Rinsate Blank Trip Blank Equipment Rinsate Blank Trip Blank Trip Blank Trip Blank	WATER	1/11/00 1/11/00 1/11/00 1/11/00 1/11/00 1/11/00 1/12/00 1/12/00 1/12/00 1/12/00 1/13/00 1/13/00 1/13/00 1/13/00 1/13/00 1/12/00
407061 407062 407064 407066 407068 407167 407168 407168MSD 407169 407172 407325 407326 407173	0002F001 0002F002 0002F003 0002F004 0002F005 0002F007 0002F007MSD 0002F007MSD 0002F0011 0002F012 0002F012 0002F013 0002P001 0002P002	Type Trip Blank Equipment Rinsate Blank Trip Blank Equipment Rinsate Blank Trip Blank Trip Blank Full Validation Sample	WATER	1/11/00 1/11/00 1/11/00 1/11/00 1/11/00 1/11/00 1/12/00 1/12/00 1/12/00 1/12/00 1/12/00 1/12/00 1/13/00 1/13/00 1/13/00 1/12/00 1/12/00 1/12/00 1/12/00
407061 407062 407064 407066 407068 407167 407168 407168MS 407169 407172 407325 407326 407173 407174	0002F001 0002F002 0002F003 0002F004 0002F005 0002F007 0002F007MSD 0002F008 0002F011 0002F012 0002F013 0002P001 0002P002 0002P003 0002P003	Type Trip Blank Equipment Rinsate Blank Trip Blank Equipment Rinsate Blank Trip Blank Trip Blank Trip Blank	WATER	1/11/00 1/11/00 1/11/00 1/11/00 1/11/00 1/11/00 1/12/00 1/12/00 1/12/00 1/12/00 1/12/00 1/12/00 1/12/00 1/12/00 1/12/00 1/12/00 1/12/00 1/13/00 1/12/00 1/12/00 1/12/00 1/12/00
407061 407062 407064 407066 407068 407167 407168 407168MS 407169 407172 407325 407326 407173 407174 407175 407319 407322	0002F001 0002F002 0002F003 0002F004 0002F005 0002F006 0002F007 0002F007MS 0002F008 0002F011 0002F012 0002F013 0002P001 0002P002 0002P003 0002P006 0002P006	Type Trip Blank Equipment Rinsate Blank Trip Blank Equipment Rinsate Blank Trip Blank Trip Blank Full Validation Sample Trip Blank	WATER	1/11/00 1/11/00 1/11/00 1/11/00 1/11/00 1/11/00 1/12/00 1/12/00 1/12/00 1/12/00 1/12/00 1/12/00 1/12/00 1/12/00 1/13/00 1/13/00 1/12/00 1/13/00 1/13/00 1/13/00 1/13/00
407061 407062 407064 407066 407068 407167 407168 407168MS 407169 407172 407325 407326 407173 407174 407175 407319	0002F001 0002F002 0002F003 0002F004 0002F005 0002F007 0002F007MSD 0002F008 0002F011 0002F012 0002F013 0002P001 0002P002 0002P003 0002P003	Type Trip Blank Equipment Rinsate Blank Trip Blank Equipment Rinsate Blank Trip Blank Trip Blank Full Validation Sample	WATER	1/11/00 1/11/00 1/11/00 1/11/00 1/11/00 1/11/00 1/12/00 1/12/00 1/12/00 1/12/00 1/12/00 1/12/00 1/12/00 1/12/00 1/12/00 1/12/00 1/12/00 1/13/00 1/12/00 1/12/00 1/12/00 1/12/00

All samples were received intact and properly labeled. Cooler temperatures were within 2 - 6° C upon arrival at the laboratory.

3.0 CLP Low Level Volatile Organics by GC/MS

3.1 Laboratory Control Samples

Due to a problem in the LCS analysis, the nondetected result for the following associated sample is qualified as estimated (UJ3):

LCS ID:

0.5PPBLCS

BATCH ID:

VBLKK9

MATRIX:

WATER

PREP DATE:

	% Recovery	1	2
Analyte	LCS	Limits	Q ·
CARBON TETRACHLORIDE	68	75- 125	J3/UJ3

Associated

samples:

0002P005

Detected results for the listed compound may be biased low, and a false nondetect may have been reported.

3.2 Other Qualifications

The following results are qualified as estimated (J):

	Reported						
Sample ID	Analyte	DF	Result	RL	Units	Q .	
0002F009	CIS-1,2-DICHLOROETHENE	1.9	0.6	2	UG/L	J	
0002P004	TRANS-1,2-DICHLOROETHENE	1	0.3	1	UG/L	J	

According to the TtEMI Statement of Work, any detected results reported below the RL should be flagged J

Detected results reported below the RL are considered qualitatively acceptable, but quantitatively unreliable due to the uncertainty in analytical precision near the limit of detection.

Full Validation for Sample 0002F010

3.3 GC/MS Tuning

The ion abundance criteria were met for the bromofluorobenzene (BFB) GC/MS performance check. The sample was analyzed within 12 hours of the associated performance check.

3/22/00

Project-Established Limits

According to the TtEMI Statement of Work, if the LCS recovery is less than the lower control limit, apply J3 to all associated detects and UJ3 to nondetects

Full Validation for Sample 0002F010

3.3 Target Compound List Identification

The relative retention times, mass spectra, and peak identifications of the sample was evaluated. Target compound identification was considered to be correct.

Compound Quantitation and Reported Detection Limits

Sample results were recalculated with the proper dilution factors and volumes used to calculate the sample results. The sample was found to be correctly quantitated. The reported detection limits were consistent with TtEMI's required report limits and reflect any dilutions and volumes used.

Tentatively Identified Compounds (TICs)

The sample spectra and library searches were evaluated. No TICs were identified.

System Performance

The sample was evaluated for reconstructed ion chromatogram (RIC) baseline shifts, extraneous peaks, loss of resolution, and peak tailing. No system degradation was noted.

4.0 CLP Volatile Organics by GC/MS

4.1 Blanks

Due to common laboratory contamination, the following results are considered nondetected (U4);

Matrix: WATER

Client ID	Analyte	Reported Result	Qualified Result	Units
0002F005	ACETONE	4 /	10 U4	UG/L

According to the TtEMI Statement of Work for Hunters Point, if the concentration detected in a sample is at a level < RL, the value shall be elevated to the RL (U4); if the concentration detected in an associated sample is > RL, but less than 5X RL, the result shall be qualified as nondetected at the level detected (U4).

Blanks

Due to field or equipment blank contamination, the following results are considered nondetected (U2):

Blank ID:

0002F012

Trip Blank

Collection Date:

1/13/00

Analyte	Result	RL	Units	_
CHLOROFORM	1J /	10	UG/L	

Associated Results:

Reported Result Qualified Result

0002P009

WATER

CHLOROFORM

10 U2

UG/L

Blank ID:

0002P001

Trip Blank

Collection Date:

1/12/00

•

Analyte	Result	RL	Units
CHLOROFORM	5J /	10	UG/L

Associated Results:		Reported Result	Qualified Result		
0002F008	WATER	CHLOROFORM	8	10 U2	UG/L

According to the TtEMI Statement of Work for Hunters Point, all results are considered for qualification using the 5X rule applied to the highest blank contaminant concentration as stated in the National Functional Guidelines (EPA 1994); if the concentration detected in an associated sample is at a level < RL, the value shall be elevated to the RL (U2); if the concentration detected in an associated sample is > RL, but less than 5X RL, the result shall be qualified as nondetected at the level detected (U2).

4.2 Calibrations

Due to continuing calibrations problems, the following nondetected results are qualified as estimated (UJ7):

Date Analyzed: 1/20/00	cc	
Analyte	%D	Q
2-BUTANONE 2-HEXANONE	35.5 / 37 /	J7 / UJ7 J7 / UJ7
ACETONE	43.8	J7 / UJ7

Associated

Samples: 0002P008

4.3 Other Qualifications

The following results are qualified as estimated (J):

Sample ID	Analyte	DF	Reported Result	RL	Units	Q 1
, 0002F005	CHLOROFORM	1	6	10	UG/L	J
0002F012	CHLOROFORM	1	1	10	UG/L	J
0002P001	CHLOROFORM	1	5	10	UG/L	J
0002P003	1,2-DICHLOROETHANE	1	2	10	UG/L	J
0002P006	TERT-BUTYL METHYL ETHER	1	1	5	UG/L	J

According to the TtEMI Statement of Work, any detected results reported below the RL should be flagged J

Detected results reported below the RL are considered qualitatively acceptable, but quantitatively unreliable due to the uncertainty in analytical precision near the limit of detection.

4.4 Field Duplicates

One set of field duplicates was collected for analysis by this method. Results for both the primary sample and duplicate sample were non-detect for all target analytes.

Full Validation for Samples 0002P003 and 0002P009

4.5 GC/MS Tuning

The ion abundance criteria were met for the bromofluorobenzene (BFB) GC/MS performance check. The samples were analyzed within 12 hours of the associated performance check.

According to the TtEMI Statement of Work, if the continuing calibration %D exceeds 25%, apply J7 to all detected results, apply UJ7 to all non-detects

Full Validation for Samples 0002P003 and 0002P009

4.5 **Target Compound List Identification**

The relative retention times, mass spectra, and peak identifications of the samples were evaluated. Target compound identification was considered to be correct.

Compound Quantitation and Reported Detection Limits

Sample results were recalculated with the proper dilution factors and volumes used to calculate the sample results. The samples were found to be correctly quantitated. The reported detection limits were consistent with TtEMI's required report limits and reflect any dilutions and volumes used.

Tentatively Identified Compounds (TICs)

The sample spectra and library searches were evaluated. TIC results were recalculated and found to be correct. All identified compounds were reported with the "NJ" qualifier.

System Performance

The samples were evaluated for reconstructed ion chromatogram (RIC) baseline shifts, extraneous peaks, loss of resolution, and peak tailing. No system degradation was noted.

9

5.0 CLP Semivolatile Organic Compounds by GC/MS

5.1 Calibrations

Due to initial calibrations problems, the following nondetected result is qualified as estimated (UJ7):

ICAL Date:	ICAL RSD	
Analyte	KSD	Q
2,4-DINITROPHENOL	34.2	J7 / UJ7

Associated

Samples:

0002P003A

Calibrations

Due to continuing calibrations problems, the following nondetected results are qualified as estimated (UJ7):

Date Analyzed: 1/24/00	cc	•
Analyte	% D	. Q
2,4-DICHLOROPHENOL	25.1	J7 / UJ7
2.4-DIMETHYLPHENOL	31.5	J7 / UJ7
4,6-DINITRO-2-METHYLPHENOL	28.5	J7 / UJ7
4-CHI OROANILINE	26	J7 / UJ7

Associated

Samples:

0002P003A

According to the TtEMI Statement of Work, if the inital calibration RSD exceeds 30%, apply J7 to all detected results, apply

According to the TtEMI Statement of Work, if the continuing calibration %D exceeds 25%, apply J7 to all detected results, apply UJ7 to all non-detects

5.2 Other Qualifications

The following results are qualified as estimated (J):

			Reported			
Sample ID	Analyte	DF	Result	RL	Units	Q
0002P003A						
	2-METHYLNAPHTHALENE	1.4	6	14	UG/L	J
	ANTHRACENE	1.4	7	14	UG/L	J
	CARBAZOLE	1.4	5	14	UG/L	J
	DIBENZOFURAN	1.4	12	14	UG/L	J
	FLUORENE	1.4	12	14	UG/L	J
	PHENANTHRENE	1.4	2	14	UG/L	J
	PYRENE	1.4	8	14	UG/L	J

According to the TtEMI Statement of Work, any detected results reported below the RL should be flagged J

Detected results reported below the RL are considered qualitatively acceptable, but quantitatively unreliable due to the uncertainty in analytical precision near the limit of detection.

Full Validation for Sample 0002P003A

5.3 GC/MS Tuning

The ion abundance criteria were met for the decafluorotriphenylphosphine (DFTPP) GC/MS performance checks. The sample was analyzed within 12 hours of the associated performance check.

Target Compound List Identification

The relative retention times, mass spectra and peak identifications of the sample was evaluated. Target compound identification was considered to be correct.

Compound Quantitation and Reported Detection Limits

Sample results were recalculated with the proper dilution factors and volumes used to calculate results. The sample was found to be correctly quantitated. The reported detection limits were consistent with TtEMI's required reporting limits. All reported results reflect any dilutions and volumes.

Tentatively Identified Compounds (TICs)

The sample spectra and library searches were evaluated. TIC results were recalculated and found to be correct. All identified compounds were reported with the "NJ" qualifier.

System Performance

The sample was evaluated for reconstructed ion chromatogram (RIC) baseline shifts, extraneous peaks, loss of resolution and peak tailing. No system degradation was noted.

6.0 CLP Organochlorine Pesticides/PCBs by GC/ECD

6.1 Surrogate Recovery

Due to surrogate recovery problems, nondetected results for the following sample are qualified as estimated (UJ3):

Sample ID	DF	Surrogate	% Rec	Q
0002P003A	1	TCMX DCB	24, 17 / 14, 10 /	13 \ N13 13 \ N13

According to the Statement of Work for Hunters Point, if two or more surrogate recoveries are > 10% and below the LCL, flag detected and nondetected results J3/UJ3

Full Validation for Sample 0002P003A

6.23 Compound Quantitation and Reported Detection Limits

Sample results were recalculated with the proper dilution factors and volumes used to calculate results. The sample was found to be correctly quantitated. The reported detection limits were consistent with TtEMI's required reporting limits and reflect any dilutions and volumes used.

System Performance

The sample was evaluated for baseline shifts, extraneous peaks, loss of resolution and peak tailing. No system degradation was noted.

6.2 compound I don't freetien

Due to compound identification problems, the following detected vested (U9):

· alpha- chondane in saple 002P003ARE

The 7.D between the two columns was >507, and The reported result was less than the report limit. The report limit, 0.01 uq. vilidated result is mondetexted at the report limit, 0.01 uq. ansidered to be

SDG:

TPH Extractables by GC/FID (Modified SW8015) 7.0

All cursory requirements were met by this method.

7.1 **Field Duplicates**

One set of field duplicates was collected for analysis by this method. The following results were found:

	Primary Sample		Dup Sample			
Analyte	0002P007		0002P008			
	Result	RL	Result	RL	Units	RPD
DIESEL FUEL	0.1 U	0.1	0.1 U	0.1	MG/L	NC
MOTOR OIL	0.2 MZ	0.1	HME.0	0.1	MG/L	40

Sample results are not qualified on the basis of field duplicate precision.

Full Validation for Samples 0002F010, 0002P003A and 0002P009

Compound Quantitation and Reported Detection Limits 7.2

Sample results were recalculated with the proper dilution factors and volumes used to calculate results. The samples were were found to be correctly quantitated. The reported detection limits were consistent with TtEMI's required reporting limits and reflect any dilutions and volumes used.

System Performance

The samples were evaluated for baseline shifts, extraneous peaks, loss of resolution and peak tailing. No system degradation was noted.

13

76600

8.0 TPH Purgeables by GC/FID (Modified SW8015)

8.1 Surrogate Recovery

Due to surrogate recovery problems, nondetected results for the following samples are qualified as estimated (UJ3):

Lab ID	Client ID	Matrix	DF	Analyte	% Rec	Limits	Q
407062	0002F002	WATER	1	BROMOFLUOROBENZENE	65 /	75- 125	J3/UJ3
407062R	0002F002RE	WATER	1	BROMOFLUOROBENZENE	58 🗸	75- 125	J3/UJ3

Project-established Limits

8.2 Field Duplicates

One set of field duplicates was collected for analysis by this method. Results for both the primary sample and duplicate sample were non-detect for gasoline.

Full Validation for Samples 0002F010, 0002P003A and 0002P009

8.3 Compound Quantitation and Reported Detection Limits

Sample results were recalculated with the proper dilution factors and volumes used to calculate results. The samples were found to be correctly quantitated. The reported detection limits were consistent with TtEMI's required reporting limits and reflect any dilutions and volumes used.

System Performance

The samples were evaluated for baseline shifts, extraneous peaks, loss of resolution and peak tailing. No system degradation was noted.

¹ According to the Statement of Work for Hunters Point, if any surrogate recovery is > 10% and below the LCL, flag detected/nondetected results J3/UJ3; if the dilution factor is > 5, no action is taken

9.0 CLP Total and Dissolved Metals by ICP/CVAA

9.1 Blanks

Due to laboratory blank contamination, the following results are considered nondetected (U1):

Matrix:

WATER

Prep Date:

1/19/00

Blank ID	Analyte	Result	DL	Units
ССВ	ALUMINUM	171.2	15.5	UG/L
ICB	ARSENIC	2.8	2.5	UG/L
ICB	BERYLLIUM	0.3	0.1	UG/L
PBW11	MANGANESE	1.3	0.6	UG/L
PBW21	MERCURY	0.13	0.1	UG/L
PBW11	ZINC	5.8	1.9	UG/L
		Qualified Pasult		

			Qualified	
Affected San	nples:		Result	
0002F004	WATER	ALUMINUM	781 U1	UG/L
0002F004F	WATER	ALUMINUM	30.2 U1	UG/L
0002F008	WATER	ALUMINUM	24.2 U1	UG/L
0002F011	WATER	ALUMINUM	24.8 U1	UG/L
0002F013	WATER	ALUMINUM	48.5 U1	UG/L
0002F002	WATER	ARSENIC	2.7 U1	UG/L
0002F003F	WATER	'ARSENIC	3.2 U1	UG/L
0002F004	WATER	ARSENIC	5.8 U1	UG/L
0002P003A	WATER	ARSENIC	5.3 U1	UG/L
0002P005	WATER	ARSENIC	3.3 U1	UG/L
0002F002	WATER	BERYLLIUM	0.18 U1	UG/L
0002F002F	WATER	BERYLLIUM	0.21 U1	UG/L
0002F004F	WATER	BERYLLIUM	0.11 U1	UG/L
0002P003A	WATER	BERYLLIUM	0.25 U1	UG/L
0002P007	WATER	BERYLLIUM	0.16 U1	UG/L
0002P008	WATER	BERYLLIUM	0.23 U1	UG/L
0002P009	WATER	BERYLLIUM	0.11 U1	UG/L
0002F013	WATER	BERYLLIUM	0.18 U1	UG/L
0002F011	WATER	MANGANESE	0.88 U1	UG/L
0002F003F	WATER	MERCURY	0.12 · U1	UG/L
0002F004	WATER	MERCURY	0.13 · U1	UG/L
0002F004F	WATER	MERCURY	0.15 * U1	UG/L
0002F011	WATER	MERCURY	0.11 * U1	UG/L
0002P003A	WATER	MERCURY	0.11 * U1	UG/L
0002P007	WATER	MERCURY	0.12 · U1	UG/L
0002F003	WATER	ZINC	3.9 U1	UG/L
0002F007	WATER	ZINC	11 U1	UG/L
0002F011	WATER	ZINC	3.4 U1	UG/L

Blanks (cont.) 9.1

Matrix:

WATER

Analysis Date: 2/2/00

Blank ID		Analyte	Result	DL	Units
ICB		CADMIUM	0.6	0.2	UG/L
ССВ		CALCIUM	166.2	151	UG/L
ICB		CHROMIUM	2.2	1	UG/L
ICB		COBALT	1.5 /	1.3	UG/L
			Qualified Result		
Affected Sa	mples:				
0002F010	WATER	CADMIUM	0.39 U1		UG/L
0002P009	WATER	CADMIUM	0.8 8 U1		UG/L
0002P008	WATER	CADMIUM	0.71 U1		UG/L
0002F002F	WATER	CADMIUM	1 .6 U1		UG/L
0002P007	WATER	CĄDMIUM	0.3 5 U1		UG/L
0002F013	WATER	CADMIUM	0.66 U1		UG/L
0002F004F	WATER	CADMIUM	0 .99 U1		UG/L
0002F002	WATER	CADMIUM	1.3 U1		UG/L
0002F011	WATER	CALCIUM	168 U1		UG/L
0002F002	WATER	CHROMIUM	5.9 U1		UG/L
0002F002F	WATER	CHROMIUM	5.6 U1		UG/L
0002F003	WATER	CHROMIUM	5.3 U1		UG/L
0002F003F	WATER	CHROMIUM	6.5 U1		UG/L
0002F004	WATER	CHROMIUM	6.5 U1		UG/L
0002F004F	WATER	CHROMIUM	4.5 U1		UG/L
0002F008	WATER	CHROMIUM	6.4 U1		UG/L
0002F010	WATER	CHROMIUM	1.8 U1		UG/L
0002F013	WATER	CHROMIUM	4.1 U1		UG/L
0002F004F	WATER	COBALT	3.8 U1		UG/L
0002P009	WATER	COBALT	1.4 U1		UG/L
0002F010	WATER	COBALT	1.5 U1		UG/L
0002F002F	WATER	COBALT	1.6 U1		UG/L
0002F013	WATER	COBALT	6.1 U1		UG/L
0002P007	WATER	COBALT	3.6 U1		UG/L
0002P008	WATER	COBALT	4.4 U1		UG/L
332, 00			4 4 114		1104

1.4 U1

3/22/00

0002F008

WATER

COBALT

UG/L

9.1 Blanks (cont.)

Matrix: WATER Analysis Date: 2/2/00

Blank ID	Analyte	Result	DL	Units
ССВ	MOLYBDENUM	1.2 /	0.9	UG/L
ICB	THALLIUM	5.8 /	3.2	UG/L
		Qualified		

CCD		MOLIBBEITOM		P .			
ICB		THALLIUM	5.8		3.2	UG/L	
			Qualifie				
Affected San	nples:		Result				
0002F008	WATER	MOLYBDENUM	3.6	U1		UG/L	
0002F002F	WATER	MOLYBDENUM	5.3	U1		UG/L	
0002P005	WATER	MOLYBDENUM	2.8	U1		UG/L	
0002F003F	WATER	MOLYBDENUM	2	U1		UG/L	
0002F013	WATER	MOLYBDENUM	2.3	U1		UG/L	
0002F011	WATER	MOLYBDENUM	1.6	U1		UG/L	
0002F004	WATER	MOLYBDENUM	4.7	U1		UG/L	
0002F007	WATER	MOLYBDENUM	2.3	U1		UG/L	
0002F002F	WATER	THALLIUM	12.4	U1		UG/L	
0002F004F	WATER	THALLIUM	6.3	U1		UG/L	
0002F002	WATER	THALLIUM	12.4	U1		UG/L	
0002F010	WATER	THALLIUM	6.2	U1		UG/L	
0002P009	WATER	THALLIUM	6.7	U1		UG/L	
0002P003A	WATER	THALLIUM	4.7	U1		UG/L	
0002P007	WATER	THALLIUM	12.5	U1		UG/L	
0002P008	WATER	THALLIUM	7.5	U1		UG/L	
0002F008	WATER	THALLIUM	4.9	U1		UG/L	
JJJ JJJ		-					

SDG:

9.1 Blanks (cont.)

Due to negative drift observed in laboratory blanks, the following results are considered estimated (UJ1):

Result

DL

Units

Matrix:

WATER

Prep Date:

Blank ID

1/19/00

Analyte

Analysis Date: 1/19/00

PBW11		COPPER	-12		1.6	UG/L
PBW11		IRON /	-24	/	14.8	UG/L
CCB		POTASSIUM	-1292		169	UG/L
PBW11		SILVER	-4.5		1	UG/L
			Qualified			
Associated	Results:		Result			Units
0002F004	WATER	COPPER	32.8	J1		UG/L
0002F002	WATER	COPPER	1.6	UJ1		UG/L
0002F008	WATER	COPPER	1.6	UJ1		UG/L
0002F005F	WATER	COPPER	1.6	UJ1		UG/L
0002F010	WATER	COPPER	6.5	J1		UG/L
0002F011	WATER	COPPER	1.6	UJ1		UG/L
0002F005	WATER	COPPER	1.6	UJ1		UG/L
0002F007	WATER	COPPER	1.6	UJ1		· UG/L
0002F004F	WATER	COPPER	19.1	J1		UG/L
0002P003A	WATER	COPPER	1.6	UJ1		UG/L
0002P007	WATER	COPPER	10.5	J1	_	UG/L
0002P005	WATER	COPPER	1.6	UJ1	_	UG/L
0002P009	WATER	COPPER	2	J1		UG/L
0002F003F	WATER	COPPER	1.6	UJ1		UG/L
0002F002F	WATER	COPPER	8.4	J1		UG/L
0002P008	WATER	COPPER	7.1	J1		UG/L
0002F003	WATER	COPPER	1.6	UJ1		UG/L
0002F013	WATER	COPPER	1.6	UJ1		UG/L
0002F005F	WATER	IRON	14.8	UJ1		UG/L
0002F011	WATER	IRON	14.8	UJ1		UG/L
0002F003F	WATER	IRON	64.5	J1		UG/L
0002F005	WATER	IRON	14.8	UJ1		UG/L
0002F003	WATER	IRON	18	J1		UG/L
0002P005	WATER	IRON	14.8	UJ1		UG/L
0002F007	WATER	IRON	75.7	J1		UG/L
0002F005F	WATER	POTASSIUM	169	UJ1		UG/L
0002F005	WATER	POTASSIUM	169	UJ1		UG/L
0002F007	WATER	POTASSIUM	3820	J1		UG/L
0002F011	WATER	POTASSIUM	169	UJ1		UG/L
0002F011	WATER	POTASSIUM	3360	J1		UG/L
0002P005	WATER	POTASSIUM	5160	J1		UG/L
0002F003	WATER	SILVER	1	UJ1		UG/L
0002F004 0002F002	WATER	SILVER	1	UJ1		UG/L
0002P008	WATER	SILVER	1	UJ1		UG/L
0002F002F	WATER	SILVER	3.5	J1		UG/L

SDG:

			Qualified		
Associated	Results:		Result		Units
0002P007	WATER	SILVER	3.1	J1	UG/L
0002P005	WATER	SILVER	. 1	UJ1	UG/L
0002F003	WATER	SILVER	1	UJ1	UG/L
0002P003A	WATER	SILVER	. 1	UJ1	UG/L
0002F007	WATER	SILVER	1	UJ1	UG/L
0002F013	WATER	SILVER	1	UJ1	. UG/L
0002F005F	WATER	SILVER	1	UJ1	UG/L
0002F004F	WATER	SILVER	3.4	J1	UG/L
0002F011	WATER	SILVER	1	UJ1	UG/L
0002F010	WATER	SILVER	3.2	J1	UG/L
0002F005	WATER	SILVER	1	UJ1	UG/L
0002F008	WATER	SILVER	1	UJ1	UG/L
0002P009	WATER	SILVER	1	UJ1	UG/L
0002F003F	WATER	SILVER	1	UJ1	UG/L

9.1 Blanks (cont.)

Matrix:

WATER

Prep Date:

1/19/00

Analysis Date:

1/19/00

Blank ID		Analyte	Result		DL	Units
CCB		ANTIMONY	-2.6		2.2	UG/L
CCB		SELENIUM	-3.8 🖊	/	2.5	UG/L
CCB		SODIUM ~	-3222	/	289	UG/L
		Magnesur	-764			usll
			Qualified			
Associated	Results:		Result			Units
0002F008	WATER	ANTIMONY	7.2	J1		UG/L
0002F002F	WATER	ANTIMONY	5	J1		UG/L
0002F003	WATER	ANTIMONY	2.2	UJ1		UG/L
0002F003F	WATER	ANTIMONY	5.4	J1		UG/L
0002F004	WATER	ANTIMONY	2.2	UJ1		UG/L
0002F004F	WATER	ANTIMONY	6.2	J1		UG/L
0002F005	WATER	ANTIMONY	2.2	UJ1		UG/L
0002F005F	WATER	ANTIMONY	2.2	UJ1		UG/L
0002F002	WATER	ANTIMONY	2.2	UJ1		UG/L
0002F007	WATER	ANTIMONY	2.2	UJ1		UG/L
0002F010	WATER	ANTIMONY	3.8	J1		UG/L
0002F011	WATER	ANTIMONY	2.2	UJ1		UG/L
0002F013	WATER	ANTIMONY	5.2	J1		UG/L
0002P009	WATER	ANTIMONY	5.4	J1		UG/L
0002P003A	WATER	ANTIMONY	4.9	J1		UG/L
0002P008	WATER	ANTIMONY	10.7	J1		UG/L
0002F005	WATER	ANTIMONY	3.9	J1		UG/L
0002P007	WATER	ANTIMONY	11.8	J1		UG/L
0002F007	WATER	SELENIUM	2.5	UJ1		UG/L
0002F003	WATER	SELENIUM	2.5	UJ1		UG/L
	WATER	SELENIUM	2.5	UJ1		UG/L
0002F002F		SELENIUM	2.5	UJ1		UG/L
0002P008	WATER		2.5	UJ1		UG/L
0002F003	WATER	SELENIUM	2.5	UJ1		UG/L
0002F003F	WATER	SELENIUM	2.5 2.5	UJ1		UG/L
0002P007	WATER	SELENIUM				UG/L
0002F004	WATER	SELENIUM	2.5	UJ1		UG/L
0002F004F	WATER	SELENIUM	2.5	UJ1		
0002F007	WATER	SELENIUM	2.5	UJ1		UG/L
0002P005	WATER	SELENIUM	2.5	UJ1		UG/L
0002F005F	WATER	SELENIUM	2.5	UJ1		UG/L
0002P003A	WATER	SELENIUM	2.5	UJ1		UG/L
0002P009	WATER	SELENIUM	2.5	UJ1		UG/L
0002F008	WATER	SELENIUM	2.5	UJ1		UG/L
0002F013	WATER	SELENIUM	2.5	UJ1		UG/L
0002F010	WATER	SELENIUM	2.5	UJ1		UG/L
0002F011	WATER	SELENIUM	2.5	UJ1		UG/L
0002F011	WATER	SODIUM	289	UJ1		UG/L

Prepared by ETHIX

CLP Total and Dissolved Metals by ICP/CVAA

3/22/00

0002 FUOS F

Mo

20 495 set 11 556 11

SDG:

76600

Associated Results:			Qualified Result		Units
0002F005F	WATER	SODIUM	414	UJ1	UG/L
0002F005	WATER	SODIUM	1230	UJ1	UG/L

According to the TtEMI Statement of Work for Hunters Point, all results are considered for qualification using the 5X rule applied to the highest blank contaminant concentration as stated in the National Functional Guidelines (EPA 1994); if negative drift >IDL is found, qualify all nondetected and detected results < 5X the value as estimated (J1/UJ1).

9.2 Matrix Spikes

Due to accuracy problems in the MS analysis, the following detected and nondetected results are qualified as estimated (J3/UJ3):

MS Batch ID:

PBW11

Dil Factor:

1

MS/MSD ID:

0002F007MS

Prep Date:

1/19/00

Spiked Sample:

407168MS

Analysis Date:

2/2/00

Matrix:

WATER

Analyte	% Recovery	Limits 1	Q 2
SELENIUM	74.4	75- 125	J3/UJ3 -

Associated samples:

1			
	0002F002	0002F002F	0002F003
	0002F003F	0002F004	0002F004F
	0002F005	0002F005F	0002F007
	0002F008	0002F010	0002F011
	0002P003A	0002P005	0002P007
	0002P008	0002P009	0002F013

Project-established Limits

According to the Statement of Work for Hunters Point, if the MS or MSD recovery is < LCL, flag detected results for that analyte J3 and flag nondetects UJ3; for metals, qualifiers apply to all batch samples

9.3 ICP Serial Dilution

Due to ICP serial dilution problems, detected results in the following associated samples are qualified as estimated (J4):

Prep Batch ID:

PBW11

Prep Date:

1/19/00

SD Sample	Analyte	Sample Value (µg/L)	50X IDL	SD %D	Q i
0002F007	SODIUM	128000	14450	142 -	J4 /
Associated					
Samples:	0002F002	0002F002F		0002F003	
	0002F003F	0002F004		0002F004F	7
	0002F005	0002F005F		0002F007	
	0002F008	0002F010		0002F011	
•	0002P003A	0002P005		0002P007	
	0002P008	0002P009		0002F013	

According to the TtEMI Statement of Work, if the %D for any analyte is >10%, and the original sample result is > 50X the IDL, flag results J4 (only applies to detects)

9.4 Other Qualifications

The following results are qualified as estimated (J):

			Reported		1	
Sample ID	Analyte	DF	Result	Units	Q [†]	
0002F002	BARIUM	1	116	UG/L	J	
0002F002	MOLYBDENUM	1	7.5	UG/L	J	
0002F002	NICKEL	1	26.1	UG/L	J	
0002F002	VANADIUM	· 1	2.5	UG/L	J	
0002F003	BARIUM	1	85.1	UG/L	j	
0002F003	NICKEL	1	6.4	UG/L	J	
0002F004	BARIUM	1	49.6	UG/L	j	
0002F004	NICKEL	1	10.9	UG/L	j	
0002F004	VANADIUM:	1	5	UG/L	J	
0002F007	BARIUM	1	1 6 8	UG/L	J	
0002F007	NICKEL	1	2.9	UG/L	J	
0002F008	NICKEL	1	21.3	UG/L	J	
0002F008	VANADIUM	1	6.4	UG/L	j	
0002F010	MOLYBDENUM	1	9.8	UG/L	J	
0002F010	NICKEL	1	14	UG/L	j	
0002F010	VANADIUM	1	4.6	UG/L	j	
0002F013	NICKEL	1	17.9	UG/L	J	
0002F013	VANADIUM	1	6	UG/L	J	
0002P003A	MOLYBDENUM	1	8	UG/L	J	
0002P005	NICKEL	1	7.5	UG/L	J	
0002P005	VANADIUM	1	3.8	UG/L	J	
0002P007	MOLYBDENUM	1	7.9	UG/L	J	
0002P008	MOLYBDENUM	1	6.4	UG/L	J	
0002P009	MOLYBDENUM	1	9.8	UG/L	J	
0002P009	NICKEL	1	36.2	UG/L	J	
0002P009	VANADIUM	1	4.4	UG/L	J	

According to the TtEMI Statement of Work, any detected results reported below the RL should be flagged J

Detected results reported below the RL are considered qualitatively acceptable, but quantitatively unreliable due to the uncertainty in analytical precision near the limit of detection.

9.5 **Field Duplicates**

One set of field duplicates was collected for analysis by this method. The following results were found:

	Primary Sample		Du Sam			
	0002P00	07	00021	P 00 8		
Analyte	Result	DL	Result	DL	Units	RPD
ALUMINUM	15.5 U	15.5	15.5	U 15.5	UG/L	NC
ANTIMONY	11.8 B	2.2	10.7	B 2.2	UG/L	10
ARSENIC	2.5 U	2.5	2.5	U 2.5	UG/L	NC
BARIUM	459	7.6	456	7.6	UG/L	1
BERYLLIUM	0.16 B	0.1	0.23	B 0.1	UG/L	36 🕹
CADMIUM	0.35 B	0.2	0.71	B 0.2	UG/L	6 8 ¹
CALCIUM	440000	151	432000	151	UG/L	2
CHROMIUM	1 U	1	1 (U 1	UG/L	NC
COBALT	3.6 B	1.3	4.4	B 1.3	UG/L	20
COPPER	10.5 B	1.6	7.1	B 1.6	UG/L	39 -
IRON	856	14.8	641	14.8	UG/L	29 ↑
LEAD	1.3 U	1.3	1.3	U 1.3	UG/L	NC
MAGNESIUM	695000	327	688000	327	UG/L	1
MANGANESE	83 5	0.6	820	0.6	UG/L	2
MERCURY	0.12 B	0.1	0.1	U 0.1	UG/L	18
MOLYBDENUM	7.9 B	0.9	6.4	B 0.9	UG/L	21
NICKEL	48.9	1.7	49.6	1.7	UG/L	1
POTASSIUM	225000	4530	191000	4530	UG/L	16
SELENIUM	2.5 UN	2.5	2.5 U	N 2.5	UG/L	0
SILVER	3.1 B	1	1	U 1	UG/L	102 6
SODIUM	4610000 E	28900	4910000	E 28900	_ UG/L	6
THALLIUM	12.5	3.2	7.5	B 3.2	UG/L	50 ~
VANADIUM	1.8 U	1.8	1.8	U 1.8	UG/L	NC
ZINC	110	1.9	112	1.9	UG/L	2

Sample results are not qualified on the basis of field duplicate precision.

Full Validation for Samples 0002F010, 0002P003A and 0002P009

Analyte Quantitation and Reported Detection Limits 9.9

Sample results were recalculated with the proper dilution factors and volumes used to calculate results. The samples were found to be correctly quantitated. The reported detection limits were consistent with TtEMI's required reporting limits and reflect any dilutions and volumes used

10.0 **Overall Assessment of Data**

Method Compliance and Additional Comments

For the pesticide analysis, sample 0002P003A was originally analyzed after sulfur cleanup. The sample exhibited low surrogate recoveries. The laboratory reanalyzed the sample; surrogate recoveries were acceptable, however, the laboratory failed to perform sulfur cleanup on the reanalysis. Sulfur interference was present in the reanalysis, therefore reporting limits from the original analysis should be used as the

Notes: The law had Thought that the low resonants in the original analysis never Usability due to a bad autosupler injection; however ETHIX Thought the analytis were probably lost during the only cleanup.

Due to low laboratory control sample recovery in the law love to the law law.

Due to low laboratory control sample recovery in the low level volatiles analyses, the nondetected carbon

tetratchloride result for one sample is qualified as estimated.

The lab about took a recised Form I for the reanalysis, since they hadn't adjusted the report limits for the concentrated extract.

Due to common laboratory contamination in the volatiles analyses, the detected acetone result for one sample is qualified as nondetect. Due to field blank contamination, chloroform results for two samples are qualified as nondetect. Due to calibration problems, nondetected 2-butanone, 2-hexanone and acetone results for one sample are qualified as estimated.

Due to calibration problems in the semivolatiles analyses, nondetected 2,4-dinitrophenol, 2,4dichlorophenol, 2,4-dimethylphenol, 4,6-dinitro-2-methylphenol and 4-chloroaniline results for one sample are qualified as estimated.

Due to low surrogate recovery in the pesticide analyses, all results for one sample are qualified as estimated.

Due to low surrogate recovery in the TPH-purgeables analyses, gasoline results for one sample and reanalysis are qualified as estimated.

Due to low matrix spike recovery in the metal analyses, selenium results for eighteen samples are qualified as estimated. Due to serial dilution precision exceedance, sodium results for eighteen samples are qualified as estimated. Due to laboratory blank contamination, aluminum and arsenic results for five samples, beryllium, cadmium, cobalt and molybdenum results for eight samples, chromium and thallium results for nine samples, calcium and manganese results for one sample, mercury results for six samples and zinc results for three samples are qualified as nondetect. Due to laboratory blank negative drift, antimony, copper, selenium and silver results for eighteen samples, iron results for seven samples, magnesium and sodium results for three samples and potassium results for six samples are qualified as estimated.

For the TPH-purgeables analyses, sample 0002F002 exhibited low surrogate recovery; reanalysis yielded lower surrogate recoveries. Results from the original analysis should be used as the final validated results.

The quality control reviewed, other than those discussed above, were met and are considered acceptable. Sample results that were found to be rejected (R) are unusable for all purposes. Sample results that were found to be estimated (J) are usable for limited purposes only. Based upon the cursory and full data validation all other results are considered valid and usable for all purposes. In general, the absence of rejected data and the small number of qualifiers added to the data indicate high usability.

76600

References 11.0

"Data Validation Guidelines for CLP Organic Analyses", TtEMI, March 20, 1997

"Data Validation Guidelines for Non-CLP Organic Analyses", TtEMI, March 20, 1997

"Data Validation Guidelines for CLP Inorganic Analyses", TtEMI, March 20, 1997

"TtEMI Comprehensive Long-term Environmental Action Navy II Analytical Services Statement of Work" (May 5, 1997)

"USEPA Contract Laboratory Program National Guidelines for Organic Data Review" (February 1994)

"USEPA Contract Laboratory Program National Guidelines for Inorganic Data Review" (February 1994)

Appendix A

Data Quality Summary

by Analysis Type

Laboratory Project ID 76600

Sample Delivery Group

76600

LVOA

	Data Points	% of Data	% of Qualified Data	Bias (low/none/high)
TOTAL DATA POINTS:	168	. •	-	-
TOTAL QUALIFIED DATA POINTS:	3	1.8%	•	-
TOTAL REJECTED DATA POINTS:	0	0.0%	-	-
Qualified/Rejected as a result of:				
UJ3 - Compound is estimated due to surr/LCS exceedance	1	0.6%	33.3%	L
J - Result is > the MDL but < the PQL	2	1.2%	66.7%	N

Sample Delivery Group 76600

VOA

•	Data Points	% of Data	% of Qualified Data	Bias (low/none/high)
TOTAL DATA POINTS:	612	- .	-	-
TOTAL QUALIFIED DATA POINTS:	11	1.8%	-	-
TOTAL REJECTED DATA POINTS:	0	0.0%	-	-
Qualified/Rejected as a result of:				i singer
U2 - Compound is ND due to field blank contamination	2	0.3%	18.2%	н
U4 - Compound is ND due to common lab contamination	1	0.2%	9.1%	Н
J - Result is > the MDL but < the PQL	5	0.8%	45.5%	N
UJ7 - compound is estimated due to cal. exceedance	3	0.5%	27.3%	N

Sample Delivery Group

76600

SVOA

	Data Points	% of Data	% of Qualified Data	Bias (low/none/high)
TOTAL DATA POINTS:	64	•	•	-
TOTAL QUALIFIED DATA POINTS:	12	18.8%	-	.
TOTAL REJECTED DATA POINTS:	0	0.0%	- '	-
Qualified/Rejected as a result of:				
J - Result is > the MDL but < the PQL UJ7 - Compound is estimated due to cal. exceedance	7 5	10.9% 7.8%	58.3% 41.7%	N N

Sample Delivery Group

76600

PEST

Data Points	% of Data	% of Qualified Data	Bias (low/none/high
28	÷	-	-
1	3.6%	-	- .
0	0.0%	-	~
	Points 28	28 - 1 3.6%	28 1 3.6% -

Qualified/Rejected as a result of:

No qualified data

Sample Delivery Group

TPHEXT

	Data Points	% of Data	% of Qualified Data	Bias (low/none/high)
TOTAL DATA POINTS:	28	-	•	•
TOTAL QUALIFIED DATA POINTS:	0	0.0%	-	· -
TOTAL REJECTED DATA POINTS:	. 0	0.0%	-	-
Qualified/Rejected as a result of:				
No qualified data				

Sample Delivery Group

76600

TPHPRG

	Data Points	% of Data	% of Qualified Data	Bias (low/none/high)
TOTAL DATA POINTS:	15	•	-	
TOTAL QUALIFIED DATA POINTS:	2	13.3%	-	-
TOTAL REJECTED DATA POINTS:	0	0.0%	-	-
Qualified/Rejected as a result of:				
UJ3 - Compound is estimated due to surr/LCS exceedance	2	13.3%	100.0%	L

Sample Delivery Group

76600

TMETAL

	Data Points	% of Data	% of Qualified Data	Bias (low/none/high)
TOTAL DATA POINTS:	336	-	-	
TOTAL QUALIFIED DATA POINTS:	162	48.2%	-	-
TOTAL REJECTED DATA POINTS:	0	0.0%	-	· -
Qualified/Rejected as a result of:				
U1 - Analyte is nondetected due to laboratory blank contamination	54	16.1%	33.3%	Н
J1 - Analyte is estimated due to negative drift	21	6.3%	13.0%	L
J14 - Multiple Reasons	1	0.3%	0.6%	L
UJ1 - Analyte is estimated due to negative drift	34	10.1%	21.0%	L
UJ13 - Multiple Reasons	14	4.2%	8.6%	L
J - Result is > the MDL but < the PQL	26	7.7%	16.0%	N
J4 - Analyte is estimated due to serial dilution exceedance	12	3.6%	7.4%	N

Sample Delivery Group

76600

DMETAL

	Data Points	% of Data	% of Qualified Data	Bias (low/none/high)
TOTAL DATA POINTS:	96	-	-	-
TOTAL QUALIFIED DATA POINTS:	47	49.0%	- -	-
TOTAL REJECTED DATA POINTS:	0	0.0%	- ,	-
Qualified/Rejected as a result of:				
U1 - Analyte is nondetected due to laboratory blank contamination	17	17.7%	36.2%	Н
J1 - Analyte is estimated due to negative drift	9	9.4%	19.1%	L
J14 - Multiple Reasons	1	1.0%	2.1%	L
UJ1 - Analyte is estimated due to negative drift	7	7.3%	14.9%	L
UJ13 - Multiple Reasons	4	4.2%	8.5%	L
J - Result is > the MDL but < the PQL	6	6.3%	12.8%	N
J4 - Analyte is estimated due to serial dilution exceedance	3	3.1%	6.4%	N

TABLE 1

DATA VALIDATION QUALIFIERS AND CODES

Compound is nondetected due to laboratory blank contamination

	U2	Compound is nondetected due to field blank contamination
	U4	Compound is nondetected because of common laboratory contamination
	J0/UJ 0	Compound is estimated due to internal standard exceedance
	J1/UJ1	Compound is estimated due to noncompliant instrument performance criteria
	J2/UJ2	Compound is estimated due to laboratory duplicate precision exceedance
	J4/UJ4	Analyte is estimated due to serial dilution exceedance
	J3/UJ3	Compound is estimated due to surrogate/MS/LCS exceedance
	J6	Analyte is estimated due to field duplicate precision exceedance
	J5/UJ5	Compound is estimated due to holding time exceedance
	J7/UJ7	Compound is estimated due to calibration exceedance
	J8	Compound is estimated due to calibration range exceedance
	J9	Compound is estimated due to interference check exceedance (metals) or confirmation problems (dual column analyses)
	R0	Compound is rejected due to internal standard exceedance
	R1	Compound is rejected due to holding time exceedance
h	R2	Compound is rejected due to surrogate/MS/LCS exceedance
	R3	Compound is rejected due to noncompliant instrument performance criteria
	R7	Compound is rejected due to calibration exceedance
	J	Result is above the MDL but less than the CRQL

U1

DATA VALIDATION REPORT
Ted Review 3/2/00 by Roman Mogo / THOMI

Hunters Point Shipyard

Parcel B Ramp Wells CTO270

Prepared for

Tetra tech EMI

Severn Trent Laboratories Laboratory Project ID 76626

1.0 Introduction

This report summarizes the technical review of analytical laboratory sample results generated in support of sampling and analysis activities at Hunters Point Shipyard. The criteria applied for this review are consistent with the project specific guidelines, in conjunction with analytical method protocols (see section 10.0 for specific references). In cases where specific guidance was not available from either of these sources, the data have been evaluated using professional judgement consistent with industry standards. The review included evaluation of sample collection, holding time, and summary information for blanks (to assess contamination), sample duplicates (to assess precision), laboratory control samples and calibrations (to assess accuracy) and matrix spike and surrogate recoveries (to assess matrix effect). Verification of laboratory system performance, compound identification, analyte quantitation, and reporting limits was performed on designated samples.

The report is arranged by method; within each method section is a sub-section identifying each non-compliance, qualifier and associated samples. Appendix A summarizes all qualified data, and Table 1 defines data validation qualifiers and comments.

I certify that all data validation criteria described above were assessed, and any qualifications made to the data were in accordance with the cited reference documents.

Certified by

Prepared by ETHIX

3/22/00

Introduction

SDG:

76626

2.0 Sample Collection, Preservation and Handling

PEST

The following samples and analysis methods are associated with this Sample Delivery Group:

	e:	Sample Type	Madriy	Date Collected
Lab ID	Field ID	.,,,,	Matrix	
407439	0002F019	Full Validation Sample	WATER	1/14/00
407440	0002F020	Dup of 0002F019	WATER	1/14/00
407440MS	0002F020MS		WATER	1/14/00
407440MD	0002F020MSD		WATER	1/14/00
407441	0002F021		WATER	1/14/00
SVOA				D -4-
		Sample		Date Collected
Lab ID	Field ID	Type	Matrix	Concetted
407439	0002F019	Full Validation Sample	WATER	1/14/00
407440	0002F020	Dup of 0002F019	WATER	1/14/00
407441	0002F021		WATER	1/14/00
TMETAL				Date
	er: 1.145	Sample Type	Matrix	Collected
Lab ID	Field ID	.,,,,,	Watrix	
407443	0002F009A		WATER	1/14/00
407328	0002F014		WATER	1/13/00
407329	0002F015		WATER	1/13/00
407330	0002F016		WATER	1/13/00
407331	0002F017	Equipment Rinsate Blank	WATER	1/13/00
407439	0002F019	Full Validation Sample	WATER	1/14/00
407440	000000000	Dup of 0002F019	WATER	1/14/00
407440	0002F020	•		
	0002F020	•	WATER	1/14/00
407441		·	WATER WATER	1/14/00 1/14/00
407441 407442	0002F021	Equipment Rinsate Blank		
407441 407442 407444	0002F021 0002F022	Equipment Rinsate Blank	WATER	1/14/00
407441 407442 407444 407437	0002F021 0002F022 0002F023	Equipment Rinsate Blank	WATER WATER	1/1 <i>4/</i> 00 1/1 <i>4/</i> 00
407441 407442 407444 407437 407434	0002F021 0002F022 0002F023 0002P002A	Equipment Rinsate Blank Full Validation Sample	WATER WATER WATER	1/14/00 1/14/00 1/14/00
407441 407442 407444 407437 407434 407435 407435DP	0002F021 0002F022 0002F023 0002P002A 0002P011		WATER WATER WATER WATER	1/14/00 1/14/00 1/14/00 1/14/00
407441 407442 407444 407437 407434 407435	0002F021 0002F022 0002F023 0002P002A 0002P011 0002P012		WATER WATER WATER WATER WATER	1/14/00 1/14/00 1/14/00 1/14/00 1/14/00

TPHEXT				Date
	er: 4 1 100	Sample Type	Matrix	Collected
Lab ID	Field ID	.,,,,,	Waltix	
407443	0002F009A		WATER	1/14/00
407328	0002F014		WATER	1/13/00
407329	0002F015		WATER	1/13/00
407330	0002F016		WATER	1/13/00
407331	0002F017	Equipment Rinsate Blank	WATER	1/13/00
407439	0002F019	Full Validation Sample	WATER	1/14/00
407440R1	0002F020	Dup of 0002F019	WATER	1/14/00
407441	0002F021		WATER	1/14/00
407442	0002F022		WATER	1/14/00
407444	0002F023	Equipment Rinsate Blank	WATER	1/14/00
407437	0002P002A		WATER	1/14/00
407434	0002P011		WATER	1/14/00
407435	0002P012	Full Validation Sample	WATER	1/14/00
407435MS	0002P012MS		WATER	1/14/00
407435MD	0002P012MSD		WATER	1/14/00
407436	0002P014		WATER	1/14/00
TPHPRG				
1111110		Sample		Date
Lab ID	Field ID	Туре	Matrix	Collected
407443	0002F009A		WATER	1/14/00
407328	0002F014		WATER	1/13/00
407329	0002F015		WATER	1/13/00
407330	0002F016		WATER	1/13/00
407331	0002F017	Equipment Rinsate Blank	WATER	1/13/00
407439	0002F019	Full Validation Sample	WATER	1/14/00
407440	0002. 0.0	,		*
107 110	0002F020	Dup of 0002F019	WATER	1/14/00
407441	0002F020 0002F021	Dup of 0002F019	WATER WATER	1/1 4/ 00 1/1 4/ 00
407441 407442	0002F021	Dup of 0002F019		
407442	0002F021 0002F022	,	WATER	1/14/00
4 07442 4 07444	0002F021	Dup of 0002F019 Equipment Rinsate Blank	WATER WATER	1/1 <i>4/</i> 00 1/1 <i>4/</i> 00
407442 407444 407437	0002F021 0002F022 0002F023 0002P002A	,	WATER WATER WATER	1/14/00 1/14/00 1/14/00
407442 407444 407437 407434	0002F021 0002F022 0002F023	,	WATER WATER WATER WATER	1/14/00 1/14/00 1/14/00 1/14/00
407442 407444 407437 407434 407435	0002F021 0002F022 0002F023 0002P002A 0002P011 0002P012	Equipment Rinsate Blank	WATER WATER WATER WATER WATER	1/14/00 1/14/00 1/14/00 1/14/00 1/14/00
407442 407444 407437 407434 407435 407435MS	0002F021 0002F022 0002F023 0002P002A 0002P011 0002P012 0002P012MS	Equipment Rinsate Blank	WATER WATER WATER WATER WATER WATER	1/14/00 1/14/00 1/14/00 1/14/00 1/14/00
407442 407444 407437 407434 407435	0002F021 0002F022 0002F023 0002P002A 0002P011 0002P012	Equipment Rinsate Blank	WATER WATER WATER WATER WATER WATER WATER	1/14/00 1/14/00 1/14/00 1/14/00 1/14/00 1/14/00

VOA		Sample		Date
Lab ID	Field ID	Туре	Matrix	Collected
407328	0002F014		WATER	1/13/00
407329	0002F015		WATER	1/13/00
407330	0002F016		WATER	1/13/00
407331	0002F017	Equipment Rinsate Blank	WATER	1/13/00
407438	0002F018	Trip Blank	WATER	1/14/00
407439	0002F019	Full Validation Sample	WATER	1/14/00
407440	0002F020	Dup of 0002F019	WATER	1/14/00
407441	0002F021	•	WATER	1/14/00
407442	0002F022		WATER	1/14/00
407444	0002F023	Equipment Rinsate Blank	WATER	1/14/00
407459	0002P010	Trip Blank	WATER	1/14/00
407434	0002P011		WATER	1/14/00
407435	0002P012	Full Validation Sample	WATER	1/14/00
407435MS	0002P012MS		WATER	1/14/00
407436MD	0002P012MSD		WATER	1/14/00
407436	0002P014		WATER	1/14/00

All samples were received intact and properly labeled. Cooler temperatures were within 2 - 6° C upon arrival at the laboratory.

3.0 CLP Volatile Organics by GC/MS

3.1 Blanks

Due to common laboratory contamination, the following results are considered nondetected (U4);

Matrix: WATER

Client ID	Analyte	Reported Result	Qualified Result	Units
0002F017	ACETONE	4	10 U4	UG/L
0002F023	ACETONE	6 /	10 U4	UG/L

According to the TtEMI Statement of Work for Hunters Point, if the concentration detected in a sample is at a level < RL, the value shall be elevated to the RL (U4); if the concentration detected in an associated sample is > RL, but less than 5X RL, the result shall be qualified as nondetected at the level detected (U4).

3.2 Calibrations

Due to continuing calibrations problems, the following detected and nondetected results are qualified as estimated (J7/UJ7):

Date Analyze	ed: 1/20/00	cc	
Analyte		% D	Q
2-BUTANON	F	36.5 /	J7 / UJ7
2-HEXANON		37 /	J7 / UJ7
ACETONE		43.8 /	J7 / UJ7
Associated	00000046	0002F017	0002P011
Samples:	0002F016	0002F017	0002.
	0002P012		
Date Analyz	ed: 1/21/00	cc	
Analyte		%D	Q
2-BUTANON	ıF	45.5 /	J7 / UJ7
2-HEXANON		43.5 ノ	J7/UJ7
ACETONE	. <u> </u>	50.5 [/]	J7 / UJ7
Associated			0000E040
Samples:	0002P014	0002F018	0002F019
	0002F020	0002F021	0002F022
		0002P010	

According to the TtEMI Statement of Work for Hunters Point, if the continuing calibration %D exceeds 25%, apply J7 to all detected results, apply UJ7 to all non-detects

3.3 Other Qualifications

The following results are qualified as estimated (J):

	•		Reported			1
Sample ID	Analyte	DF	Result	RL	Units	Q
0002F017						
	CHLOROFORM	1	5	10	UG/L	J
0002F023	CHLOROFORM	1	6	10	UG/L	J
0002P011	CHLOROFORW	•				
3332. 31.	TOLUENE	1	0.9	10	UG/L	J

l According to the TtEMI Statement of Work for Hunters Point, any detected results reported below the RL should be flagged J

Detected results reported below the RL are considered qualitatively acceptable, but quantitatively unreliable due to the uncertainty in analytical precision near the limit of detection.

3.4 Field Duplicates

One set of field duplicates was collected for analysis by this method. Results for both the primary sample and duplicate sample were reported as non-detect for all target compounds.

Full Validation for Samples 0002F019 and 0002P014

3.5 GC/MS Tuning

The ion abundance criteria were met for the bromofluorobenzene (BFB) GC/MS performance check. The samples were analyzed within 12 hours of the associated performance check.

Target Compound List Identification

The relative retention times, mass spectra, and peak identifications of the samples were evaluated. Target compound identification was considered to be correct.

Compound Quantitation and Reported Detection Limits

Sample results were recalculated with the proper dilution factors and volumes used to calculate the sample results. The samples were found to be correctly quantitated. The reported detection limits were consistent with TtEMI's required report limits and reflect any dilutions and volumes used.

System Performance

The samples were evaluated for reconstructed ion chromatogram (RIC) baseline shifts, extraneous peaks, loss of resolution, and peak tailing. No system degradation was noted.

CLP Semivolatile Organic Compounds by GC/MS 4.0

Calibrations 4.1

Due to initial calibrations problems, the following nondetected results are qualified as estimated (UJ7):

ICAL Date: 1/4/00 Analyte	ICAL RSD	Q
2,4-DINITROPHENOL	34.2	J7 / UJ7

Associated

Samples:

0002F019

0002F020

0002F021

Calibrations

Due to continuing calibrations problems, the following nondetected results are qualified as estimated (UJ7):

Date Analyzed: 1/21/00	cc	
Analyte	% D	Q
2,4-DICHLOROPHENOL	33.9 /	J7 / UJ7
	27.3 /	J7 / UJ7
2,4-DIMETHYLPHENOL	28.1	J7 / UJ7
3-NITROANILINE	28.3	J7 / UJ7
4-CHLOROANILINE 4-NITROANILINE	26.8	J7 / UJ7
Associated		00007004
Samples: 0002F019	0002F020	0002F021

According to the TtEMI Statement of Work for Hunters Point, if the continuing calibration %D exceeds 25%, apply J7 to all detected results, apply UJ7 to all non-detects

Full Validation for Sample 0002F019

GC/MS Tuning 4.2

The ion abundance criteria were met for the decafluorotriphenylphosphine (DFTPP) GC/MS performance checks. The sample was analyzed within 12 hours of the associated performance check.

Target Compound List Identification

The relative retention times, mass spectra and peak identifications of the sample were evaluated. Target compound identification was considered to be correct.

According to the TtEMI Statement of Work for Hunters Point, if the inital calibration RSD exceeds 30%, apply J7 to all detected results, apply UJ7 to all non-detects

Full Validation for Sample 0002F019

4.2 Compound Quantitation and Reported Detection Limits

Sample results were recalculated with the proper dilution factors and volumes used to calculate results. The sample was found to be correctly quantitated. The reported detection limits were consistent with TtEMI's required reporting limits. All reported results reflect any dilutions and volumes used.

System Performance

The sample was evaluated for reconstructed ion chromatogram (RIC) baseline shifts, extraneous peaks, loss of resolution and peak tailing. No system degradation was noted.

SDG:

5.0 CLP Organochlorine Pesticides/PCBs by GC/ECD

All cursory requirements were met by this method.

5.1 Field Duplicates

One set of field duplicates was collected for analysis by this method. Results for both the primary sample and duplicate sample were non-detect or the RPD was less than 25% for all target analytes.

Full Validation for Sample 0002F019

5.2 Compound Quantitation and Reported Detection Limits

Sample results were recalculated with the proper dilution factors and volumes used to calculate results. The sample was found to be correctly quantitated. The reported detection limits were consistent with TtEMI's required reporting limits and reflect any dilutions and volumes used.

System Performance

The sample was evaluated for baseline shifts, extraneous peaks, loss of resolution and peak tailing. No system degradation was noted.

6.0 TPH Extractables by GC/FID (Modified SW8015)

6.1 Blanks

Due to laboratory blank contamination, the following results are considered nondetected (U1):

Matrix:

WATER

Prep Date:

1/21/00

Analysis Date: 1/21/00

extraction block result < R.L.

Blank ID		Analyte	Result		RL	Units
EBLKY8		MOTOR OIL	0.08		0.1	MG/L
Associated	Results:		Qualifie Result			
0002F014	WATER	MOTOR OIL	0.1	U1	0.1	MG/L
0002P011	WATER	MOTOR OIL	0.2	U1	0.1	MG/L
0002P014	WATER	MOTOR OIL	0.1	U1	0.1	MG/L
0002F009A	WATER	MOTOR OIL	0.2	U1	0.1	MG/L

According to the TtEMI Statement of Work for Hunters Point, if a target analyte is found in any blank at a level > RL, all associated results <5X the amount found shall be qualified as nondetected at the level detected (U1).

MMP Souring outeria: 1,250 us IL (1.25 mg/L)

6.2 Field Duplicates

One set of field duplicates was collected for analysis by this method. The following results were found:

	Primary Sample		Dup Sampi	le		
	0002F01	9	0002F0	20		
Analyte	Result	RL	Result	RL	Units	RPD
DIESEL FUEL	0.1 U	0.1	0.1 U	0.1	MG/L	NC
MOTOR OIL	0.6 ML	0.1	0.4/1LZ	0.1	MG/L	40

Sample results are not qualified on the basis of field duplicate precision.

Full Validation for Samples 0002F019 and 0002P012

6.3 Compound Quantitation and Reported Detection Limits

Sample results were recalculated with the proper dilution factors and volumes used to calculate results. The samples were found to be correctly quantitated. The reported detection limits were consistent with TtEMI's required reporting limits and reflect any dilutions and volumes used.

System Performance

The samples were evaluated for baseline shifts, extraneous peaks, loss of resolution and peak tailing. No system degradation was noted.

3/22/00

7.0 TPH Purgeables by GC/FID (Modified SW8015)

All cursory requirements were met by this method.

7.1 Field Duplicates

One set of field duplicates was collected for analysis by this method. Results for both the primary sample and duplicate sample were reported as non-detect for TPH purgeables.

Full Validation for Samples 0002F019 and 0002P012

7.2 Compound Quantitation and Reported Detection Limits

Sample results were recalculated with the proper dilution factors and volumes used to calculate results. The samples were found to be correctly quantitated. The reported detection limits were consistent with TtEMI's required reporting limits and reflect any dilutions and volumes used.

System Performance

The samples were evaluated for baseline shifts, extraneous peaks, loss of resolution and peak tailing. No system degradation was noted.

8.0 **CLP Metals**

Blanks 8.1

Due to laboratory blank contamination, the following results are considered nondetected (U1):

WATER

Analysis Date: 2/3/00

Blank ID		Analyte	Result	DL	Units
CCB		ALUMINUM	33.8 /	15.5	UG/L
CCB		ARSENIC	4.6 /	2.5	UG/L
ICB		BERYLLIUM	0.4	0.1	UG/L
ICB		CADMIUM	0.2 🗸	0.2	UG/L
CCB		CHROMIUM	2.4 🗸	1	UG/L
CCB		COPPER	2.5	1.9	UG/L
CCB		SILVER	1.6 🖊	1.3	UG/L
332			.		
			Qualified Result		Units
Affected San	nples:		Nesun		Onits
0002F015	WATER	ALUMINUM	15.6 U1		UG/L
0002F022	WATER	ARSENIC	2.8 U1		UG/L
0002F014	WATER	ARSENIC	3.1 U1		UG/L
0002F016	WATER	ARSENIC	3.7 U1		UG/L
0002F019	WATER	ARSENIC	8.4 U1		UG/L
0002F020	WATER	ARSENIC	6.6 U1		UG/L
0002P011	WATER	ARSENIC	4.4 U1		UG/L
0002F021	WATER	ARSENIC	14.2 U1		UG/L
0002P002A	WATER	ARSENIC	6.2 U1		UG/L
0002F014	WATER	BERYLLIUM	0.21 U1		UG/L
0002F019	WATER	BERYLLIUM	0.23 U1		UG/L
0002F020	WATER	BERYLLIUM	0.21 U1		UG/L
0002F021	WATER	BERYLLIUM	0.23 U1		UG/L
0002F022	WATER	BERYLLIUM	0.54 U1		UG/L
0002P012	WATER	BERYLLIUM	0.17 U1		UG/L
0002P014	WATER	BERYLLIUM	0.31 U1		UG/L
0002P011	WATER	BERYLLIUM	0.53 U1		UG/L
0002P002A	WATER	BERYLLIUM	1.5 U1		UG/L
0002P014	WATER	CADMIUM	0.58 U1		UG/L
0002P002A	WATER	CHROMIUM	2.6 U1		UG/L
0002P014	WATER	CHROMIUM	8.4 U1		UG/L
0002F022	WATER	CHROMIUM	1 U1		UG/L
0002F014	WATER	CHROMIUM	6.5 U1		UG/L
0002P014	WATER	COPPER	6 U1		UG/L
0002F014	WATER	COPPER	6.1 U1		UG/L
0002P012	WATER	COPPER	4.5 U1		UG/L
0002F021	WATER	COPPER	2.1 U1		UG/L
0002F009A	WATER	COPPER	2.2 U1		UG/L
0002F019	WATER	COPPER	2.2 U1		UG/L
0002P002A	WATER	COPPER	8 U1		UG/L
0002F015	WATER	COPPER	8.6 U1		UG/L
0002F014	WATER	SILVER	1.4 U1		UG/L
0002P014	WATER	SILVER	6.2 U1		UG/L
				•	

8.1 Blanks (cont.)

Matrix:

WATER

Prep Date:

1/27/00

Blank ID		Analyte	Result		DL	Units
PBW11		MERCURY	0.134	1/	0.1	UG/L
		MOLYBDENUM	1.835	5 /	0.9	UG/L
Affected Sam	ples:		Qualifie Result			
0002P014	WATER	MERCURY	0.12	U1		UG/L
0002P002A	WATER	MERCURY	0.14	U1		UG/L
0002F019	WATER	MERCURY	0.15	U1		UG/L
0002F021	WATER	MERCURY	0.27	U1		UG/L
0002F009A	WATER	MERCURY	0.19	U1		UG/L
0002F014	WATER	MOLYBDENUM	8.5	U1		UG/L
0002F015	WATER	MOLYBDENUM	5.1	U1		UG/L
0002F016	WATER	MOLYBDENUM	2	U1		UG/L
0002P011	WATER	MOLYBDENUM	2.5	U1		UG/L
0002P012	WATER	MOLYBDENUM	3.2	U1		UG/L
0002P014	WATER	MOLYBDENUM	5.4	U1		UG/L
0002P002A	WATER	MOLYBDENUM	6.2	U1		UG/L
0002F019	WATER	MOLYBDENUM	3.2	U1		UG/L
0002F020	WATER	MOLYBDENUM	3.4	U1		UG/L
0002F021	WATER	MOLYBDENUM	6.8	U1		UG/L
0002F022	WATER	MOLYBDENUM	3.2	U1		UG/L
0002F009A	WATER	MOLYBDENUM	4.9	U1		UG/L
0002F023	WATER	MOLYBDENUM	1	U1		UG/L

According to the TtEMI Statement of Work for Hunters Point, if a target analyte is found in any blank at a level > DL, all associated results <5X the amount found shall be qualified as nondetected at the level detected (U1). If any target analytes are detected in any blank at a level > CRDL, all associated results must be > 10X the amount found in the blank or all associated batch samples should be redigested and reanalyzed.

SDG:

8.1 Blanks (cont.)

Due to negative drift observed in laboratory blanks, the following results are considered estimated (J1 / UJ1):

Matrix:

WATER

Prep Date:

1/27/00

Analysis Date:

1/27/00

Blank ID		Analyte	Result	DL	Units
ICB		IRON	-90.4 /	20.3	UG/L
PBW11		POTASSIUM	-335,7	169	UG/L
ССВ		SELENIUM	-3.2	2.2	UG/L
ССВ		SODIUM	-1359	289	UG/L
PBW11		THALLIUM	-6.32 🖊	3.2	UG/L
Associated :	Results:		Qualified Result		Units
		IDON	50.7	4	UG/L
0002F023	WATER	IRON	56.7 J		UG/L
0002P014	WATER	IRON	20.3 UJ		UG/L
0002F016	WATER	IRON	148 UJ		
0002F022	WATER	IRON	403 J		UG/L
0002P012	WATER	IRON	23.6 J		UG/L
0002F014	WATER	IRON	20.3 UJ		UG/L
0002F015	WATER	IRON	20.3 UJ		UG/L
0002P011	WATER	IRON	71.3 J		UG/L
0002F017	WATER	IRON	20.3 UJ		UG/L
0002P002A	WATER	IRON	148 UJ		UG/L
0002F017	WATER	POTASSIUM	169 UJ		UG/L
0002F023	WATER	POTASSIUM	169 UJ	1	UG/L
0002F015	WATER	SELENIUM	2.2 UJ	1.	UG/L
0002P014	WATER	SELENIUM	2.2 UJ	1	UG/L
0002F017	WATER	SELENIUM	2.2 UJ	1	UG/L
0002F016	WATER	SELENIUM	2.2 UJ	I	UG/L
0002F019	WATER	SELENIUM	2.2 UJ	1	UG/L
0002F020	WATER	SELENIUM	2.2 UJ	1	UG/L
0002F023	WATER	SELENIUM	2.2 UJ	1	UG/L
0002F009A	WATER	SELENIUM	2.2 UJ	I	· UG/L
0002P012	WATER	SELENIUM	2.2 UJ	1	UG/L
0002F022	WATER	SELENIUM	2.2 UJ	1	UG/L
0002P011	WATER	SELENIUM	2.2 UJ	t	UG/L
0002F014	WATER	SELENIUM	2.2 UJ	1	UG/L
0002P002A	WATER	SELENIUM	2.2 UJ	i	UG/L
0002F021	WATER	SELENIUM	2.2 UJ	1	UG/L
0002F017	WATER	SODIUM	289 UJ		UG/L
0002F023	WATER	SODIUM	289 UJ	1	UG/L
0002F014	WATER	THALLIUM	11.5 J		UG/L
0002F009A	WATER	THALLIUM	3.2 UJ		UG/L
0002F009A	WATER	THALLIUM	3.2 UJ		UG/L
0002F015		THALLIUM	3.2 UJ		UG/L
	WATER		3.2 UJ		UG/L
0002F017	WATER	THALLIUM	3.2 UJ1		UG/L
0002F019	WATER	THALLIUM	3.2 03	l *	03/2

			Qualified	
Associated I	Results:		Result	Units
0002F021	WATER	THALLIUM	3.2 UJ1	UG/L
0002P014	WATER	THALLIUM	5.3 J1	UG/L
0002F022	WATER	THALLIUM	3.2 UJ1	UG/L
0002F023	WATER	THALLIUM	3.2 UJ1	UG/L
0002P002A	WATER	THALLIUM	5.3 J1	UG/L
0002P011	WATER	THALLIUM	3.2 UJ1	UG/L
0002P012	WATER	THALLIUM	3.2 UJ1	UG/L
0002F020	WATER	THALLIUM	3.2 UJ1	UG/L

According to the TtEMI Statement of Work for Hunters Point, all results are considered for qualification using the 5X rule applied to the highest blank contaminant concentration as stated in the National Functional Guidelines (EPA 1994); if negative drift >IDL is found, qualify all nondetected and detected results < 5X the absolute blank value as estimated (J1/UJ1).

Matrix Spikes 8.2

Due to accuracy problems in the MS analysis, the following nondetected results are qualified as estimated (UJ3):

PBW11

Dil Factor:

MS/MSD ID:

0002P012MS 407435MS

Prep Date:

1/27/00

Spiked Sample: Matrix:

WATER

2/3/00 **Analysis Date:**

Analyte		% Recovery	Limits 1	Q
LEAD		73.3	75- 125	J3/UJ3
Associated samples:	0002F014 0002F017 0002P014 0002F020 0002F009A	0002F015 0002P011 0002P002A 0002F021 0002F023	0	0002F016 0002P012 0002F019 0002F022

Project-established Limits

According to the Statement of Work for Hunters Point, if the MS or MSD recovery is < LCL, flag detected results for that analyte J3 and flag nondetects UJ3; for metals, qualifiers apply to all batch samples

8.3 ICP Serial Dilution

Due to ICP serial dilution problems, detected results for the following associated samples are qualified as estimated (J4):

Prep Batch ID:

PBW11

Prep Date:

1/27/00

SD Sample	Analyte	Sample Value (µg/L)	50X IDL	SD %D	Q i
0002P012	SODIUM	94000	14450	64.4	J4
Associated					÷
Samples:	0002F014	0002F015		0002F016	;
	0002F017	0002P011		0002P012	?
	0002P014	0002P002A		0002F019)
	0002F020	0002F021		0002F022	
	0002F009A	0002F023			

According to the TtEMI Statement of Work, if the %D for any analyte is >10%, and the original sample result is > 50X the IDL, flag associated sample results J4 (only applies to detects)

Similar interference to saple in 506# 76600.

8.4 Other Qualifications

The following results are qualified as estimated (J):

			Reported		1
Sample ID	Analyte	DF	Result	Units	Q
0002F009A	ANTIMONY	1	7.1	UG/L	J
0002F009A	IRON	10	482	UG/L	J
0002F009A	NICKEL	1	7.3	UG/L	J
0002F009A	POTASSIUM	1	1840	UG/L	J
0002F009A	VANADIUM	1	4.2	UG/L	J
0002F014	ANTIMONY	1	7.2	UG/L	J
0002F014	CADMIUM	1	1.3	UG/L	J
0002F015	ANTIMONY	1	3.5	UG/L	J
0002F015	NICKEL	1	3.1	UG/L	j
0002F015	VANADIUM	1	15.2	UG/L	J
0002F016	ANTIMONY	1	8.7	UG/L	j
0002F016	COBALT	1	2	UG/L	J
0002F016	NICKEL	1	22.4	UG/L	J
0002F017	ZINC	1	1.9	UG/L	J
0002F019	ANTIMONY	1	8	UG/L	J
0002F019	NICKEL	1	2.1	UG/L	J
0002F019	VANADIUM	1	2.8	UG/L	J
0002F020	ANTIMONY	1	6.2	UG/L	J
0002F021	ANTIMONY	1	4	UG/L	J
0002F021	NICKEL	1	2.1	UG/L	J
0002F022	ANTIMONY	1	3.4	UG/L	J
0002F022	COBALT	1	6.6	UG/L	J
0002F022	NICKEL	1	33.9	UG/L	J
0002F023	MANGANESE	1	0.7	UG/L	J
0002F023	ZINC	1	2.3	UG/L	J
0002P002A	ANTIMONY	1	4.2	UG/L	J
0002P002A	COBALT	1	11.7	UG/L	J
0002P002A	POTASSIUM	1	2450	UG/L	J
0002P002A	VANADIUM	1	4.4	UG/L	J
0002P011	ANTIMONY	1	6.1	UG/L	J
0002P011	COBALT	1	5.8	UG/L	J
0002P011	NICKEL	1	35.3	UG/L	j
0002P012	ANTIMONY	1	2.9	UG/L	J
0002P012	NICKEL	1	3.5	UG/L	J
0002P012	VANADIUM `	1	2	UG/L	J
0002P014	ANTIMONY	1	8.3	UG/L	J
0002P014	COBALT	1	3	UG/L	J
0002P014	NICKEL	1	36.9	UG/L	J
0002P014	VANADIUM	1	6.1	UG/L	J

According to the TtEMI Statement of Work, any detected results reported below the RL should be flagged J

Detected results reported below the RL are considered qualitatively acceptable, but quantitatively unreliable due to the uncertainty in analytical precision near the limit of detection.

76626

8.5 Field Duplicates

One set of field duplicates was collected for analysis by these methods. The following results were found:

	Primary Sample		Du Sam			
	0002F0	0002F019 0		F020		
	Result	DL	Result	DL	Units	RPD
TMETAL						
ALUMINUM	15.5 U	15.5	15.5 l	J 15.5	UG/L	NC
ANTIMONY	8 B	2.2	6.2	B 2.2	UG/L	25
ARSENIC	8.4 B	2.5	6.6	B 2.5	UG/L	24
BARIUM	549	7.6	637	7.6	UG/L	15
BERYLLIUM	0.23 B	0.1	0.21	B 0 .1	UG/L	9
CADMIUM	0.2 U	0.2	0.2 l	J 0.2	UG/L	NC
CALCIUM	169000	151	166000	151	UG/L	2
CHROMIUM	1 U	1	1 (J 1	UG/L	NC
COBALT	1.3 U	1.3	1.3 l	J 1.3	UG/L	NC
COPPER	2.2 B	1.9	1.9 l	J 1.9	UG/L	15
IRON	834	20.3	736	20.3	UG/L	12
LEAD	1.3 UN	1.3	1.3 UN	N 1.3	UG/L	0
MAGNESIUM	68400	327	69800	327	UG/L	2
MANGANESE	833	0.6	837	0.6	UG/L	0
MERCURY	0.15 B	0.1	0.1 t	J 0.1	UG/L	40 ر
MOLYBDENUM	3.2 B	0.9	3.4	B 0 .9	UG/L	6
NICKEL	2.1 B	1.7	1.7 l	J 1.7	UG/L	21
POTASSIUM	16100	169	16200	169	UG/L	1
SELENIUM	2.2 UN	2.2	2.2 UN	1 2.2	UG/L	0
SILVER	1.3 U	1.3	1.3 l	J 1.3	UG/L	NC
SODIUM	140000	2890	160000	2890	UG/L	13
THALLIUM	3.2 U	3.2	3.2 l	J 3.2	UG/L	NC
VANADIUM	2.8 B	1.8	1.8 l	J 1.8	UG/L	43 ×
ZINC	178	1.9	138	1.9	UG/L	25

Sample results are not qualified on the basis of field duplicate precision.

Full Validation for Samples 0002F019 and 0002P012

8.6 Analyte Quantitation and Reported Detection Limits

Sample results were recalculated with the proper dilution factors and volumes used to calculate results. The samples were found to be correctly quantitated. The reported detection limits were consistent with TtEMI's required reporting limits and reflect any dilutions or volumes used.

9.0 Overall Assessment of Data

Usability

Due to calibration problems in the volatiles analyses, detected and nondetected 2-butanone, 2-hexanone and acetone results for twelve samples are qualified as estimated. Due to common laboratory contamination, detected acetone results for two samples are qualified as nondetected.

Due to calibration problems in the semivolatiles analyses, nondetected 2,4-dinitrophenol, 2,4-dichlorophenol, 2,4-dimethylphenol, 3-nitroaniline, 4-nitroaniline and 4-chloroaniline results for three samples are qualified as estimated.

Due to laboratory blank contamination in the TPH-extractables analyses, motor oil results for four samples are qualified as nondetected.

Due to laboratory blank contamination in the metals analyses, aluminum and cadmium results for one sample, arsenic results for eight samples, beryllium results for nine samples, chromium results for four samples, copper results for eight samples, silver results for two samples, mercury results for five samples and molybdenum results for thirteen samples are qualified as nondetected. Due to laboratory blank negative drift, selenium and thallium results for fourteen samples, iron results for ten samples, potassium and sodium results for two samples are qualified as estimated. Due to poor serial dilution precision, detected sodium results for twelve samples are qualified as estimated. Due to matrix spike precision problems, nondetected lead results for fourteen samples are qualified as estimated.

The quality control reviewed, other than those discussed above, were met and are considered acceptable. Sample results that were found to be rejected (R) are unusable for all purposes. Sample results that were found to be estimated (J) are usable for limited purposes only. Based upon the cursory and full data validation all other results are considered valid and usable for all purposes. In general, the absence of rejected data and the small number of qualifiers added to the data indicate high usability.

SDG:

10.0 References

"Data Validation Guidelines for CLP Organic Analyses", TtEMI, March 20, 1997

"Data Validation Guidelines for Non-CLP Organic Analyses", TtEMI, March 20, 1997

"Data Validation Guidelines for CLP Inorganic Analyses", TtEMI, March 20, 1997

"TtEMI Comprehensive Long-term Environmental Action Navy II Analytical Services Statement of Work" (May 5, 1997)

"USEPA Contract Laboratory Program National Guidelines for Organic Data Review" (February 1994)

"USEPA Contract Laboratory Program National Guidelines for Inorganic Data Review" (February 1994)

Appendix A

Data Quality Summary

by Analysis Type

Laboratory Project ID 76626

Sample Delivery Group

76626

VOA

	Data Points	% of Data	% of Qualified Data	Bias (low/none/high)
TOTAL DATA POINTS:	476	-	~	-
TOTAL QUALIFIED DATA POINTS:	39	8.2%	-	-
TOTAL REJECTED DATA POINTS:	0	0.0%	-	-
Qualified/Rejected as a result of:				
U4J7 - Multiple Reasons	. 2	0.4%	5.1%	н
J - Result is > the MDL but < the PQL	3	0.6%	7.7%	· N
UJ7 - Compound is estimated due to cal. exceedance	34	7.1%	87.2%	N

Sample Delivery Group

76626

SVOA

	Data Points	% of Data	% of Qualified Data	Bias (low/none/high)
TOTAL DATA POINTS:	192	-	-	*
TOTAL QUALIFIED DATA POINTS:	15	7.8%	-	-
TOTAL REJECTED DATA POINTS:	0	0.0%	-	
Qualified/Rejected as a result of:				
UJ7 - Compound is estimated due to cal. exceedance	15	7.8%	100.0%	N

Sample Delivery Group

76626

PEST

	Data Points	% of Data	% of Qualified Data	Bias (low/none/high
TOTAL DATA POINTS:	84		-	-
TOTAL QUALIFIED DATA POINTS:	0	0.0%	-	-
TOTAL REJECTED DATA POINTS:	0	0.0%	-	-

Qualified/Rejected as a result of:

No qualified data

Sample Delivery Group

76626

TPHEXT

	Data Points	% of Data	% of Qualified Data	Bias (low/none/high)
TOTAL DATA POINTS:	28	-	-	-
TOTAL QUALIFIED DATA POINTS:	4	14.3%	-	-
TOTAL REJECTED DATA POINTS:	0	0.0%	4. *	-
Qualified/Rejected as a result of:				
U1 - Compound is nondetected due to lab blank contamination	4	14.3%	100.0%	н

Sample Delivery Group

TPHPRG

	Data Points	% of Data	% of Qualified Data	Bias (low/none/high)
TOTAL DATA POINTS:	14	•	-	-
TOTAL QUALIFIED DATA POINTS:	0	0.0%	-	-
TOTAL REJECTED DATA POINTS:	0	0.0%	-	-

Qualified/Rejected as a result of:

No qualified data

Sample Delivery Group

76626

TMETAL

	Data Points	% of Data	% of Qualified Data	Bias (low/none/high)
TOTAL DATA POINTS:	336	-	-	-
TOTAL QUALIFIED DATA POINTS:	142	42.3%	-	-
TOTAL REJECTED DATA POINTS:	0	0.0%	-	•
Qualified/Rejected as a result of:				
J1 - Analyte is estimated due to negative drift	7	2.1%	4.9%	H
U1 - Analyte is nondetected due to laboratory blank contamination	51	15.2%	35.9%	н
UJ1 - Analyte is estimated due to negative drift	19	5.7%	13.4%	. Н
UJ3 - Analyte is estimated due to surr/MS/LCS exceedance	14	4.2%	9.9%	L
J - Result is > the MDL but < the PQL	39	11.6%	27.5%	N
J4 - Analyte is estimated due to serial dilution exceedance	12	3.6%	8.5%	N

TABLE 1

DATA VALIDATION QUALIFIERS AND CODES

U1	Compound is nondetected due to laboratory blank contamination
U2	Compound is nondetected due to field blank contamination
U4	Compound is nondetected because of common laboratory contamination
J0/UJ0	Compound is estimated due to internal standard exceedance
J1/UJ1	Compound is estimated due to noncompliant instrument performance criteria
J2/UJ2	Compound is estimated due to laboratory duplicate precision exceedance
J4/UJ4	Analyte is estimated due to serial dilution exceedance
J3/UJ3	Compound is estimated due to surrogate/MS/LCS exceedance
J6	Analyte is estimated due to field duplicate precision exceedance
J5/UJ5	Compound is estimated due to holding time exceedance
J7/UJ7	Compound is estimated due to calibration exceedance
J8	Compound is estimated due to calibration range exceedance
J9	Compound is estimated due to interference check exceedance (metals) or confirmation problems (dual column analyses)
R0	Compound is rejected due to internal standard exceedance
R1	Compound is rejected due to holding time exceedance
R2	Compound is rejected due to surrogate/MS/LCS exceedance
R3	Compound is rejected due to noncompliant instrument performance criteria
R7	Compound is rejected due to calibration exceedance
J	Result is above the MDL but less than the CRQL

Tech Review 3/23/00 by Romen Moegyi/T+EMI

Hunters Point Shipyard

Parcel B Ramp Wells

Prepared for

Tetra tech EMI

Curtis & Tompkins, Ltd. **Laboratory Project ID** 143095

Introduction 1.0

This report summarizes the technical review of analytical laboratory sample results generated in support of sampling and analysis activities at Hunters Point Shipyard. The criteria applied for this review are consistent with the project specific guidelines, in conjunction with analytical method protocols (see section 5.0 for specific references). In cases where specific guidance was not available from either of these sources, the data have been evaluated using professional judgement consistent with industry standards. The review included evaluation of sample collection, holding time, and summary information for blanks (to assess contamination), sample duplicates (to assess precision), laboratory control samples and calibrations (to assess accuracy) and matrix spike and surrogate recoveries (to assess matrix effect). Verification of laboratory system performance, compound identification, analyte quantitation, and reporting limits was performed on designated samples.

The report is arranged by method; within each method section is a sub-section identifying each noncompliance, qualifier and associated samples. Appendix A summarizes all qualified data, and Table 1 defines data validation qualifiers and comments.

I certify that all data validation criteria described above were assessed, and any qualifications made to the data were in accordance with the cited reference documents.

Certified by

Prepared by ETHIX

Introduction

3/22/00

1

SDG:

143095

2.0 Sample Collection, Preservation and Handling

The following samples and analysis methods are associated with this Sample Delivery Group:

CHROM

Lab ID	Field ID	Sample Type	Matrix	Date Collected
143095-001	9950F001	Full Validation Sample	WATER	12/17/99
QC103836	9950F001MS	•	WATER	12/17 /9 9
QC103837	9950F001MSD		WATER	12/17 <i>1</i> 99

All samples were received intact and properly labeled. Cooler temperatures were not recorded on the chain-of-custody and the sample receipt form was not included with this sample delivery group.

Hexavalent Chromium (SW7196) 3.0

All cursory requirements were met by this method.

Full Validation for Sample 9950F001

Compound Quantitation and Reported Detection Limits 3.1

Sample results were recalculated with the proper dilution factors and volumes used to calculate the sample results. The sample was found to be correctly quantitated. The reported detection limits were consistent with TtEMI's required report limits and reflect any dilutions and volumes utilized.

143095

4.0 Overall Assessment of Data

Usability

The quality control reviewed were met and are considered acceptable. Based upon the cursory and full data validation all results are considered valid and usable for all purposes.

Prepared by ETHIX

Overall Assessment of Data

4

SDG: 143095

3/22/00

5.0 References

"Data Validation Guidelines for CLP Inorganic Analyses", TtEMI, March 20, 1997

"TtEMI Comprehensive Long-term Environmental Action Navy II Analytical Services Statement of Work" (May 5, 1997)

"USEPA Contract Laboratory Program National Guidelines for Inorganic Data Review" (February 1994)

Appendix A

Data Quality Summary

by Analysis Type

Laboratory Project ID 143095

Sample Delivery Group 143095

CHROM

	Data Points	% of Data	% of Qualified Data	Bias (low/none/high)
TOTAL DATA POINTS:	1		-	-
TOTAL QUALIFIED DATA POINTS:	0	0.0%	-	-
TOTAL REJECTED DATA POINTS:	0	0.0%	-	-
Qualified/Rejected as a result of:				

TABLE 1

DATA VALIDATION QUALIFIERS AND CODES

U1	Compound is nondetected due to laboratory blank contamination
U2	Compound is nondetected due to field blank contamination
U4	Compound is nondetected because of common laboratory contamination
J0/UJ0	Compound is estimated due to internal standard exceedance
J1/UJ1	Compound is estimated due to noncompliant instrument performance criteria
J2/UJ2	Compound is estimated due to laboratory duplicate precision exceedance
J4/UJ4	Analyte is estimated due to serial dilution exceedance
J3/UJ3	Compound is estimated due to surrogate/MS/LCS exceedance
J6	Analyte is estimated due to field duplicate precision exceedance
J5/UJ5	Compound is estimated due to holding time exceedance
J7/UJ7	Compound is estimated due to calibration exceedance
J8	Compound is estimated due to calibration range exceedance
J9	Compound is estimated due to interference check exceedance (metals) or confirmation problems (dual column analyses)
R0	Compound is rejected due to internal standard exceedance
R1	Compound is rejected due to holding time exceedance
R2	Compound is rejected due to surrogate/MS/LCS exceedance
R3	Compound is rejected due to noncompliant instrument performance criteria
R7	Compound is rejected due to calibration exceedance
J	Result is above the MDL but less than the CRQL

DATA VALIDATION REPORT Tech Review 3/23/00 by Roman Morgi/THEMI

Hunters Point Shipyard

Parcel B Ramp Wells

Prepared for

Tetra tech EMI

Curtis & Tompkins, Ltd. Laboratory Project ID 143360

1.0 Introduction

This report summarizes the technical review of analytical laboratory sample results generated in support of sampling and analysis activities at Hunters Point Shipyard. The criteria applied for this review are consistent with the project specific guidelines, in conjunction with analytical method protocols (see section 5.0 for specific references). In cases where specific guidance was not available from either of these sources, the data have been evaluated using professional judgement consistent with industry standards. The review included evaluation of sample collection, holding time, and summary information for blanks (to assess contamination), sample duplicates (to assess precision), laboratory control samples and calibrations (to assess accuracy) and matrix spike and surrogate recoveries (to assess matrix effect). Verification of laboratory system performance, compound identification, analyte quantitation, and reporting limits was performed on designated samples.

The report is arranged by method; within each method section is a sub-section identifying each non-compliance, qualifier and associated samples. Appendix A summarizes all qualified data, and Table 1 defines data validation qualifiers and comments.

I certify that all data validation criteria described above were assessed, and any qualifications made to the data were in accordance with the cited reference documents.

Certified by

Prepared by ETHIX

--- 440

3/22/00

1

SDG:

143360

Introduction

2.0 Sample Collection, Preservation and Handling

The following samples and analysis methods are associated with this Sample Delivery Group:

CHROM

		Sample		Date
Lab ID	Field ID	Туре	Matrix	Collected
143360-001	0002F002		WATER	1/11/00
QC105315	0002F002MS		WATER	1/11/00
QC105316	0002F002MSD		WATER	1/11/00
143360-002	0002F003		WATER	1/11/00
143360-003	0002F004		WATER	1/11/00
143360-004	0002F005	Equipment Rinsate Blank	WATER	1/11/00

All samples were received intact and properly labeled. Cooler temperatures were not recorded on the chain-of-custody and the sample receipt form was not included with this sample delivery group.

3.0 Hexavalent Chromium (SW7196)

All cursory requirements were met by this method. Full validation was not required for this sample delivery group.

Overall Assessment of Data 4.0

Usability

The quality control reviewed were met and are considered acceptable. Based upon the cursory review all results are considered valid and usable for all purposes.

Prepared by ETHIX 3/22/00

5.0 References

"Data Validation Guidelines for CLP Inorganic Analyses", TtEMI, March 20, 1997

"TtEMI Comprehensive Long-term Environmental Action Navy II Analytical Services Statement of Work" (May 5, 1997)

"USEPA Contract Laboratory Program National Guidelines for Inorganic Data Review" (February 1994)

Appendix A

Data Quality Summary

by Analysis Type

Laboratory Project ID 143360

Sample Delivery Group 143360

CHROM

	Data Points		% of Qualified Data	Bias (low/none/high)
TOTAL DATA POINTS:	4	-	-	-
TOTAL QUALIFIED DATA POINTS:	0	0.0%	-	-
TOTAL REJECTED DATA POINTS:	0	0.0%	-	-
Qualified/Rejected as a result of:				
No qualified data				

TABLE 1

DATA VALIDATION QUALIFIERS AND CODES

U1	Compound is nondetected due to laboratory blank contamination
U2	Compound is nondetected due to field blank contamination
U4	Compound is nondetected because of common laboratory contamination
70/070	Compound is estimated due to internal standard exceedance
J1/UJ1	Compound is estimated due to noncompliant instrument performance criteria
J2/UJ2	Compound is estimated due to laboratory duplicate precision exceedance
J4/UJ4	Analyte is estimated due to serial dilution exceedance
J3/UJ3	Compound is estimated due to surrogate/MS/LCS exceedance
J 6	Analyte is estimated due to field duplicate precision exceedance
J5/UJ5	Compound is estimated due to holding time exceedance
J7/UJ7	Compound is estimated due to calibration exceedance
J8	Compound is estimated due to calibration range exceedance
J9	Compound is estimated due to interference check exceedance (metals) or confirmation problems (dual column analyses)
R0	Compound is rejected due to internal standard exceedance
R1	Compound is rejected due to holding time exceedance
R2	Compound is rejected due to surrogate/MS/LCS exceedance
R3	Compound is rejected due to noncompliant instrument performance criteria
R7	Compound is rejected due to calibration exceedance
J	Result is above the MDL but less than the CRQL

Toch Review 3/23/00 by Romen Mobys / THEMI

Hunters Point Shipyard

Parcel B Ramp Wells

Prepared for

Tetra tech EMI

Curtis & Tompkins, Ltd. **Laboratory Project ID** 143382

Introduction 1.0

This report summarizes the technical review of analytical laboratory sample results generated in support of sampling and analysis activities at Hunters Point Shipyard. The criteria applied for this review are consistent with the project specific guidelines, in conjunction with analytical method protocols (see section 5.0 for specific references). In cases where specific guidance was not available from either of these sources, the data have been evaluated using professional judgement consistent with industry standards. The review included evaluation of sample collection, holding time, and summary information for blanks (to assess contamination), sample duplicates (to assess precision), laboratory control samples and calibrations (to assess accuracy) and matrix spike and surrogate recoveries (to assess matrix effect). Verification of laboratory system performance, compound identification, analyte quantitation, and reporting limits was performed on designated samples.

The report is arranged by method; within each method section is a sub-section identifying each noncompliance, qualifier and associated samples. Appendix A summarizes all qualified data, and Table 1 defines data validation qualifiers and comments.

I certify that all data validation criteria described above were assessed, and any qualifications made to the data were in accordance with the cited reference documents.

Prepared by ETHIX

Introduction

1

SDG:

143382

2.0 Sample Collection, Preservation and Handling

The following samples and analysis methods are associated with this Sample Delivery Group:

CHROM

		Sample		Date		
Lab ID	Field ID	Туре	Matrix	Collected		
143382-001	0002F007		WATER	1/12/00		
QC105387	0002F007MS		WATER	1/12/00		
QC105388	0002F007MSD		WATER	1/12/00		
143382-002	0002F008		WATER	1/12/00		
143382-003	0002F010	Full Validation Sample	WATER	1/12/00		
143382-004	0002F011	Equipment Rinsate Blank	WATER	1/12/00		
143302-004	00021011	Cdaibille Laurence minim				

All samples were received intact and properly labeled. Cooler temperatures were not recorded on the chain-of-custody and the sample receipt form was not included with this sample delivery group.

SDG:

3.0 Hexavalent Chromium (SW7196)

All cursory requirements were met by this method.

Full Validation for Sample 0002F010

3.1 Compound Quantitation and Reported Detection Limits

Sample results were recalculated with the proper dilution factors and volumes used to calculate the sample results. The sample was found to be correctly quantitated. The reported detection limits were consistent with TtEMI's required report limits and reflect any dilutions and volumes utilized.

4.0 Overall Assessment of Data

Usability

The quality control reviewed were met and are considered acceptable. Based upon the cursory and full data validation all results are considered valid and usable for all purposes.

Prepared by ETHIX 3/22/00

5.0 References

"Data Validation Guidelines for CLP Inorganic Analyses", TtEMI, March 20, 1997

"TtEMI Comprehensive Long-term Environmental Action Navy II Analytical Services Statement of Work" (May 5, 1997)

"USEPA Contract Laboratory Program National Guidelines for Inorganic Data Review" (February 1994)

5

Appendix A

Data Quality Summary

by Analysis Type

Laboratory Project ID 143382

Sample Delivery Group

143382

CHROM

	Data Points	% of Data	% of Qualified Data	Bias (low/none/high)
TOTAL DATA POINTS:	4	•	-	
TOTAL QUALIFIED DATA POINTS:	. 0	0.0%	-	-
TOTAL REJECTED DATA POINTS:	0	0.0%	-	-
Qualified/Rejected as a result of:				
No qualified data				

TABLE 1

DATA VALIDATION QUALIFIERS AND CODES

U1	Compound is nondetected due to laboratory blank contamination
U2	Compound is nondetected due to field blank contamination
U4	Compound is nondetected because of common laboratory contamination
10\N10	Compound is estimated due to internal standard exceedance
J1/UJ1	Compound is estimated due to noncompliant instrument performance criteria
J2/UJ2	Compound is estimated due to laboratory duplicate precision exceedance
J4/UJ4	Analyte is estimated due to serial dilution exceedance
J3/UJ3	Compound is estimated due to surrogate/MS/LCS exceedance
J 6	Analyte is estimated due to field duplicate precision exceedance
J5/UJ5	Compound is estimated due to holding time exceedance
J7/UJ7	Compound is estimated due to calibration exceedance
J8	Compound is estimated due to calibration range exceedance
J9	Compound is estimated due to interference check exceedance (metals) or confirmation problems (dual column analyses)
R0	Compound is rejected due to internal standard exceedance
R1	Compound is rejected due to holding time exceedance
R2	Compound is rejected due to surrogate/MS/LCS exceedance
R3	Compound is rejected due to noncompliant instrument performance criteria
R7	Compound is rejected due to calibration exceedance
J	Result is above the MDL but less than the CRQL

DATA VALIDATION REPORT
Tech Review 3/23/00 by Romean Moly /THEMZ

Hunters Point Shipyard

Parcel B Ramp Wells

Prepared for

Tetra tech EMI

Curtis & Tompkins, Ltd. **Laboratory Project ID** 143411

1.0 Introduction

This report summarizes the technical review of analytical laboratory sample results generated in support of sampling and analysis activities at Hunters Point Shipyard. The criteria applied for this review are consistent with the project specific guidelines, in conjunction with analytical method protocols (see section 5.0 for specific references). In cases where specific guidance was not available from either of these sources, the data have been evaluated using professional judgement consistent with industry standards. The review included evaluation of sample collection, holding time, and summary information for blanks (to assess contamination), sample duplicates (to assess precision), laboratory control samples and calibrations (to assess accuracy) and matrix spike and surrogate recoveries (to assess matrix effect). Verification of laboratory system performance, compound identification, analyte quantitation, and reporting limits was performed on designated samples.

The report is arranged by method; within each method section is a sub-section identifying each noncompliance, qualifier and associated samples. Appendix A summarizes all qualified data, and Table 1 defines data validation qualifiers and comments.

I certify that all data validation criteria described above were assessed, and any qualifications made to the data were in accordance with the cited reference documents.

1

Prepared by ETHIX

3/22/00

Introduction

SDG:

143411

2.0 Sample Collection, Preservation and Handling

The following samples and analysis methods are associated with this Sample Delivery Group:

CHROM

		Sample		Date Collected	
Lab ID	Field ID	Туре	Matrix		
143411-001	0002F013		WATER	1/13/00	
QC105462	0002F013MS		WATER	1/13/00	
QC105463	0002F013MSD		WATER	1/13/00	
143411-002	0002F014		WATER	1/13/00	
143411-003	0002F015		WATER	1/13/00	
143411-004	0002F016		WATER	1/13/00	
143411-005	0002F017		WATER	1/13/00	
143411-006	0002P003A	Full Validation Sample	WATER	1/13/00	
143411-007	0002P005A	•	WATER	1/13/00	
143411-008	0002P007		WATER	1/13/00	
143411-009	0002P008	Dup of 0002P007	WATER	1/13/00	
143411-010	0002P009	Full Validation Sample	WATER	1/13/00	

All samples were received intact and properly labeled. Cooler temperatures were not recorded on the chain-of-custody and the sample receipt form was not included with this sample delivery group.

3.0 **Hexavalent Chromium (SW7196)**

All cursory requirements were met by this method.

Full Validation for Samples 0002P003A and 0002P009

Compound Quantitation and Reported Detection Limits 3.1

Sample results were recalculated with the proper dilution factors and volumes used to calculate the sample results. The samples were found to be correctly quantitated. The reported detection limits were consistent with TtEMI's required report limits and reflect any dilutions and volumes utilized.

4.0 Overall Assessment of Data

Usability

The quality control reviewed were met and are considered acceptable. Based upon the cursory and full data validation all results are considered valid and usable for all purposes.

Prepared by *ETHIX* 3/22/00

5.0 References

"Data Validation Guidelines for CLP Inorganic Analyses", TtEMI, March 20, 1997

"TtEMI Comprehensive Long-term Environmental Action Navy II Analytical Services Statement of Work" (May 5, 1997)

"USEPA Contract Laboratory Program National Guidelines for Inorganic Data Review" (February 1994)

5

Appendix A

Data Quality Summary

by Analysis Type

Laboratory Project ID 143411

Data Quality Summary

Sample Delivery Group 143411

CHROM

	Data Points	% of Data	% of Qualified Data	Bias (low/none/high)
TOTAL DATA POINTS:	10	•	-	•
TOTAL QUALIFIED DATA POINTS:	o	0.0%	-	-
TOTAL REJECTED DATA POINTS:	0	0.0%	-	-
Qualified/Rejected as a result of:				
No qualified data				

TABLE 1

DATA VALIDATION QUALIFIERS AND CODES

U1	Compound is nondetected due to laboratory blank contamination
U2	Compound is nondetected due to field blank contamination
U4	Compound is nondetected because of common laboratory contamination
J0/UJ0	Compound is estimated due to internal standard exceedance
J1/UJ1	Compound is estimated due to noncompliant instrument performance criteria
J2/UJ2	Compound is estimated due to laboratory duplicate precision exceedance
J4/UJ4	Analyte is estimated due to serial dilution exceedance
J3/UJ3	Compound is estimated due to surrogate/MS/LCS exceedance
J 6	Analyte is estimated due to field duplicate precision exceedance
J5/UJ5	Compound is estimated due to holding time exceedance
J7/UJ7	Compound is estimated due to calibration exceedance
J8	Compound is estimated due to calibration range exceedance
J9	Compound is estimated due to interference check exceedance (metals) or confirmation problems (dual column analyses)
R0	Compound is rejected due to internal standard exceedance
R1	Compound is rejected due to holding time exceedance
R2	Compound is rejected due to surrogate/MS/LCS exceedance
R3	Compound is rejected due to noncompliant instrument performance criteria
R7	Compound is rejected due to calibration exceedance
J	Result is above the MDL but less than the CRQL

DATA VALIDATION REPORT

Tech Review 3/23/00 by Romeon Moppi/THEMI

Hunters Point Shipyard

Parcel B Ramp Wells

Prepared for

Tetra tech EMI

Curtis & Tompkins, Ltd. **Laboratory Project ID** 143428

Introduction 1.0

This report summarizes the technical review of analytical laboratory sample results generated in support of CTO 270, Hunters Point Shipyard. The criteria applied for this review are consistent with the project specific guidelines, in conjunction with analytical method protocols (see section 5.0 for specific references). In cases where specific guidance was not available from either of these sources, the data have been evaluated using professional judgement consistent with industry standards. The review included evaluation of sample collection, holding time, and summary information for blanks (to assess contamination), sample duplicates (to assess precision), laboratory control samples and calibrations (to assess accuracy) and matrix spike and surrogate recoveries (to assess matrix effect). Verification of laboratory system performance, compound identification, analyte quantitation, and reporting limits was performed on designated samples.

The report is arranged by method; within each method section is a sub-section identifying each noncompliance, qualifier and associated samples. Appendix A summarizes all qualified data, and Table 1 defines data validation qualifiers and comments.

I certify that all data validation criteria described above were assessed, and any qualifications made to the data were in accordance with the cited reference documents.

Prepared by ETHIX

2.0 Sample Collection, Preservation and Handling

The following samples and analysis methods are associated with this Sample Delivery Group:

CHROM

		Sample		Date
Lab ID	Field ID	Туре	Matrix	Collected
143428-005	0002F009A		WATER	1/14/00
143428-001	0002F019	Full Validation Sample	WATER	1/14/00
143428-002	0002F020	Dup of 0002F019	WATER	1/14/00
143428-003	0002F021	•	WATER	1/14/00
143428-004	0002F022		WATER	1/14/00
143428-006	0002F023	Equipment Rinsate Blank	WATER	1/14/00
143428-011	0002P002A	•	WATER	1/14/00
143428-007	0002P011		WATER	1/14/00
143428-008	0002P012	Full Validation Sample	WATER	1/14/00
QC105556	0002P012MS		WATER	1/14/00
QC105557	0002P012MSD		WATER	1/14/00
143428-010	0002P014		WATER	1/14/00

All samples were received intact and properly labeled. Cooler temperatures were not recorded on the chain-of-custody and the sample receipt form was not included with this sample delivery group.

3.0 **Hexavalent Chromium (SW7196)**

All cursory requirements were met by this method.

Full Validation for Samples 0002F019 and 0002P012

3.1 **Compound Quantitation and Reported Detection Limits**

Sample results were recalculated with the proper dilution factors and volumes used to calculate the sample results. The samples were found to be correctly quantitated. The reported detection limits were consistent with TtEMI's required report limits and reflect any dilutions and volumes utilized.

4.0 Overall Assessment of Data

Usability

The quality control reviewed were met and are considered acceptable. Based upon the cursory and full data validation all results are considered valid and usable for all purposes.

Prepared by ETHIX

3/22/00

5.0 References

"Data Validation Guidelines for CLP Inorganic Analyses", TtEMI, March 20, 1997

"TtEMI Comprehensive Long-term Environmental Action Navy II Analytical Services Statement of Work" (May 5, 1997)

"USEPA Contract Laboratory Program National Guidelines for Inorganic Data Review" (February 1994)

Prepared by *ETHIX* 3/22/00

Appendix A

Data Quality Summary

by Analysis Type

Laboratory Project ID 143428

Data Quality Summary

Sample Delivery Group

143428

CHROM

	Data Points	% of Data	% of Qualified Data	Bias (low/none/high)
TOTAL DATA POINTS:	10	•	-	-
TOTAL QUALIFIED DATA POINTS:	0	0.0%	-	-
TOTAL REJECTED DATA POINTS:	.0	0.0%	-	•
Qualified/Rejected as a result of:				
No qualified data				

TABLE 1

DATA VALIDATION QUALIFIERS AND CODES

U1	Compound is nondetected due to laboratory blank contamination
U2	Compound is nondetected due to field blank contamination
U4	Compound is nondetected because of common laboratory contamination
J0/UJ0	Compound is estimated due to internal standard exceedance
J1/UJ1	Compound is estimated due to noncompliant instrument performance criteria
J2/UJ2	Compound is estimated due to laboratory duplicate precision exceedance
J4/UJ4	Analyte is estimated due to serial dilution exceedance
J3/UJ3	Compound is estimated due to surrogate/MS/LCS exceedance
J6	Analyte is estimated due to field duplicate precision exceedance
J5/UJ5	Compound is estimated due to holding time exceedance
J7/UJ7	Compound is estimated due to calibration exceedance
J8	Compound is estimated due to calibration range exceedance
J9	Compound is estimated due to interference check exceedance (metals) or confirmation problems (dual column analyses)
R0	Compound is rejected due to internal standard exceedance
R1	Compound is rejected due to holding time exceedance
R2	Compound is rejected due to surrogate/MS/LCS exceedance
R3	Compound is rejected due to noncompliant instrument performance criteria
R7	Compound is rejected due to calibration exceedance
J	Result is above the MDL but less than the CRQL